Microeconomic Theory IISpring 2016Final ExamMikhael Shor

Carefully explain and support your answers.

Question 1. Consider the following game. First, nature (player 0) selects t_1 with probability $p, 0 , or <math>t_2$ with probability 1-p. Next, player 1 selects L or R. Lastly, player 2 selects U or D.

- (a) Find all pure-strategy weak Perfect Bayesian Nash equilibria of this game. Carefully explain.
- (b) Which of the equilibria above satisfy the intuitive criterion? Carefully explain.
- (c) How does your answer above in part (a) depend on p? Carefully explain why this is the case.
- (d) Briefly discuss how and when, in general, the existence of some Perfect Bayesian Nash equilibria in signaling games may depend on p.

Question 2. Consider a principal-agent model in which the agent chooses between two levels of effort, $\{e_l, e_h\} = \{0, 1\}$. The principal pays the agent a wage w_s in state s and realizes output of π_s . There are four states, with the probability of a state contingent on effort given by:

effort level	π_1	π_2	π_3	π_4
$e_l(=0)$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$	$\frac{1}{8}$
$e_h(=1)$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$

The agent's utility function is $\sqrt{w} - e$ and his reservation utility is $\underline{u} = 2$. The principal is risk neutral, with utility given by $\pi - w$.

- (a) Compute the wage schedule that optimally implements e_h when effort is observable.
- (b) Compute the wage schedule that optimally implements e_h when effort is unobservable.
- (c) Consider the wage schedule $\{w_1, w_2, w_3, w_4\} = \{1, 1, 16, 36\}$. Does this wage schedule implement e_h ? Does it *optimally* implement e_h ? Explain.

Question 3. Consider a game consisting of two repetitions of the following stage game:

		Player 2			
		A	B	C	
	X	6, 8	0,9	1, 3	
Player 1	Y	2,0	3, 3	2, 2	
	Z	6, 2	2, 1	5, 4	

Players observe the outcome of the first stage before playing the second, with payoffs consisting of the sum of the two stages.

- (a) Find the pure-strategy subgame-perfect Nash equilibrium that results in the lowest total payoff for the two players. Find the pure-strategy subgameperfect Nash equilibrium that results in the highest total payoff for the two players.
- (b) Suppose that the payoffs (3,3) from (Y,B) are replaced by (4,3). How does this change your answers above? Would you expect player 1 to benefit from this increased payoff? Briefly discuss and explain.
- (c) Suppose that the payoffs (3,3) from (Y,B) are replaced by (3,4). Would you expect player 2 to benefit from this increased payoff? Briefly discuss and explain.