
Microeconomic Theory II Spring 2016

Final Exam Solutions Mikhael Shor

Warning: Brief, incomplete, and quite possibly incorrect.

Question 1. Consider the following game. First, nature (player 0) selects t1
with probability p, 0 < p < 1, or t2 with probability 1−p. Next, player 1 selects
L or R. Lastly, player 2 selects U or D.
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(a) Find all pure-strategy weak Perfect Bayesian Nash equilibria of this game.
Carefully explain.

First, note that t1 would never select L since the highest possible payoff (2)
is lower than the lowest possible payoff from R (4). Thus, we need only
consider one separating and one pooling equilibrium.

Consider the separating equilibrium in which the sender chooses:

t1 → R, t2 → L

The beliefs are degenerate, and the receiver’s unique best response is:

R→ U, L→ D



However, t2 then earns 1 from the presumed equilibrium strategy of L, but
earns 3 from R. So, this is not an equilibrium.

Next, consider the pooling equilibrium where both types select R. The
receiver’s on-equilibrium beliefs are µ(t1|R) = p and best response to R
is U for all p (because 1 > 0 and 4 > 3). To check sender’s best replies,
note again that t1 always wants to play R. However, t2 must prefer his
equilibrium payoff from R to what he can earn from L. This requires the
receiver’s strategy at L to be D, and this requires µ(t1|L) ≤ 1

3 . Therefore,
the only pure-strategy Perfect Bayesian Nash equilibrium is:

t1 → R, t2 → R

µ(t1|L) = q, µ(t1|R) = p

R→ U, L→ D

for any q ≤ 1
3 .

(b) Which of the equilibria above satisfy the intuitive criterion? Carefully ex-
plain.

• The only unsent message is L.

• Type t1 is earning 4 in equilibrium and would never choose L no matter
what player 2 could reasonably do.

• Imagine t2 chooses L. The receiver knows that this is not t1 (and
therefore must be t2). The receiver would select D. But then t2 would
not defect. Thus, the equilibrium does satisfy the intuitive criterion.

(c) How does your answer above in part (a) depend on p? Carefully explain
why this is the case.

It does not. This is because, in a pooling equilibrium, p is important only
for on-equilibrium beliefs (see equilibrium beliefs in (a)) which may impact
the best response of the receiver. Here, however, in response to R, U is
always strictly better than D for any p.

(d) Briefly discuss how and when, in general, the existence of some Perfect
Bayesian Nash equilibria in signaling games may depend on p.

It has no effect on the existence or nature of separating equilibria, because
the on-equilibrium beliefs are always degenerate (0 or 1). For the exis-
tence of pooling equilibria, p may affect the receiver’s on-equilibrium best
responses, which may affect existence.



Question 2. Consider a principal-agent model in which the agent chooses
between two levels of effort, {el, eh} = {0, 1}. The principal pays the agent a
wage ws in state s and realizes output of πs. There are four states, with the
probability of a state contingent on effort given by:

effort level π1 π2 π3 π4
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The agent’s utility function is
√
w − e and his reservation utility is u = 2. The

principal is risk neutral, with utility given by π − w.

(a) Compute the wage schedule that optimally implements eh when effort is
observable.

When effort is observable, wages may depend on both the state and effort.
However, risk aversion implies that the optimal wage must not vary with
state. Thus, the optimal wage satisfies IR with equality:

√
wh − e = u⇒ wh = 9.

Implied in the above is that wl is some sufficiently low wage that yields
nonpositive utility for the agent (e.g., wl = −1, 000, 000).

(b) Compute the wage schedule that optimally implements eh when effort is
unobservable.

The constraints are:
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The most important thing to note is that states 1 and 2 must result in the
same wages, and states 3 and 4 must result in the same wages. This is
because the ratio of the probabilities is the same! Note that this does not
require the probabilities to be the same (this implies that the ratio is the
same, but is not necessary for wages to be equal) and it is not because the
difference in the probabilities are the same. From the FOCs of the general
derivation, we found that wages depend only on the ratio of probabilities.
Given the above, the IC and IR constraints reduce to:
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IR :
√
w1 +

√
w3 ≥ 6

As both of these constraints must bind, the solution is

w1 = w2 = 1, w3 = w4 = 25

(c) Consider the wage schedule {w1, w2, w3, w4} = {1, 1, 16, 36}. Does this wage
schedule implement eh? Does it optimally implement eh? Explain.

By plugging in the wages into the IC and IR constraints above, we see that
both constraints are satisfied. Therefore, the wage schedule does implement
eh. To see that it does not do so optimally, we note that (i) the FOCs are
not satisfied (as they imply that wages in states 1 and 2, and in 3 and 4
must be the same). Alternately, we can see that the expected wages in our
solution above ( 1

4 (1 + 1 + 25 + 25) = 13) are lower than in this proposed
solution ( 1

4 (1 + 1 + 16 + 36) = 13.5).

Question 3. Consider a game consisting of two repetitions of the following
stage game:

Player 1

Player 2
A B C

X 6, 8 0, 9 1, 3
Y 2, 0 3, 3 2, 2
Z 6, 2 2, 1 5, 4

Players observe the outcome of the first stage before playing the second, with
payoffs consisting of the sum of the two stages.

(a) Find the pure-strategy subgame-perfect Nash equilibrium that results in the
lowest total payoff for the two players. Find the pure-strategy subgame-
perfect Nash equilibrium that results in the highest total payoff for the two
players.

The lowest payoff is obtained by playing {Y,B} in every subgame. For the
highest, note that there are two pure-strategy Nash equilibria of the stage
game and thus only two candidates for play in the second stage: {Y,B} and
{Z,C}. However, we can do better in the first stage. Consider the following
equilibrium:

Player 1: Play X in the first period, play Z in the second period following
{X,A} and play Y in the second period following any other outcome.

Player 2: Play A in the first period, play C in the second period following
{X,A} and play B in the second period following any other outcome.

The above specifies a Nash equilibrium in the second stage in every subgame
and makes {X,A} part of the SPNE in the first stage. To see this, add the



second-period payoffs to the matrix above and observe that {X,A} is an
equilibrium.

(b) Suppose that the payoffs (3, 3) from (Y,B) are replaced by (4, 3). How does
this change your answers above? Would you expect player 1 to benefit from
this increased payoff? Briefly discuss and explain.

This obviously improves the lowest possible equilibrium payoff but has no
effect on the highest payoff as the above is still an equilibrium.

(c) Suppose that the payoffs (3, 3) from (Y,B) are replaced by (3, 4). Would
you expect player 2 to benefit from this increased payoff? Briefly discuss
and explain.

This obviously improves the lowest possible equilibriu payoff but also elim-
inates the above highest-payoff equilibrium because A would no longer be
a best reponse in the first period! This is one of many examples in game
theory where a higher payoff in some scenarios can actually hurt you in
equilibrium.


