Microeconomic Theory IISpring 2022Final ExamMikhael Shor

Carefully explain and support your answers.

Question 1. Consider the following game. First, nature (player 0) selects U with probability p or D with probability 1 - p. Next, player 1 selects L or R. Lastly, player 2 selects either A, B, or C (if player 1 selected L) or X or Y (if player 1 selected R).

- (a) What are each player's pure strategies?
- (b) Assume $p = \frac{1}{2}$. Find all pure-strategy weak perfect Bayesian equilibria (and show that none other exist).
- (c) For each equilibrium found above, show whether or not it satisfies the Intuitive Criterion.
- (d) For what values of p does this game have a pooling equilibrium? Demonstrate or explain.

Question 2. Consider a principal-agent model in which the agent has three levels of effort, $e \in \{L, M, H\}$. There are three different outcomes associated with different profits for the principal, (π_1, π_2, π_3) . Define p_i^e as the probability of outcome *i* when level of effort is *e*.

The principal is risk neutral with utility given by profits minus wages. The agents utility function is (of course) given by $u(w, e) = \sqrt{w} - c(e)$.

The cost to the agent of the three types of effort are c(L) = 0, c(M) = 200, c(H) = 500. Reservation utility is 0.

(π_1, π_2, π_3)	=		$\begin{array}{c} \text{outcome } 2\\ 4,000,000 \end{array}$	outcome 3 8,000,000
$\left(p_1^L,p_2^L,p_3^L\right)$	=	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{4}$
(p_1^M,p_2^M,p_3^M)	=	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$
$\left(p_1^H,p_2^H,p_3^H\right)$	=	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{2}$

Wages cannot be negative.

- (a) If effort can be observed, what is the optimal contract? Demonstrate.
- (b) Assume that effort cannot be observed (but outcomes can). Derive the optimal contract for *each* level of effort. Show all constraints.
- (c) If effort cannot be observed, what is the optimal contract?

Question 3. Consider a differentiated-products version of a Bertrand duopoly (firms *i* and *j*). Firm $i \neq j$ has demand given by

$$q_i = 168 - 2p_i + p_j$$

with no costs of production. Each firm's profit is $p_i q_i$.

Determine firm $i\space{}\spa$

- 1. The firms choose p_i and p_j simultaneously.
- 2. The firms choose p_i and p_j sequentially, with firm i choosing first.
- 3. The firms choose p_i and p_j sequentially, with firm j choosing first.

