Microeconomic Theory II Spring 2022
Final Exam SOLUTIONS Mikhael Shor
Carefully explain and support your answers.

Question 1. Consider the following game. First, nature (player 0) selects U
with probability p or D with probability 1 — p. Next, player 1 selects L or R.

Lastly, player 2 selects either A, B, or C (if player 1 selected L) or X or Y (if
player 1 selected R).
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(a) What are each player’s pure strategies?

For player 1: { LR, RL, RR, LL}
For player 2: { AX, BX, CX, AY, BY, CY }

Remark 1a.1 The sender (player 1) has two information sets—one for each
type. {L,R} is the set of actions for each type. (Although in some cases, it
may be convenient to think of each sender type as a separate player).



Remark 1a.2 The receiver (player 2) has two information sets. A strategy
is not just an action taken at one of those information sets but a pair of
actions, one for each information set.

Assume p = % Find all pure-strategy weak perfect Bayesian equilibria (and
show that none other exist).

Separating equilibria:

1. U—-L,D—R 1. U—-R,D— 1L

2. (degenerate beliefs) 2. (degenerate beliefs)

3. LA R—Y 3. R-X,L—- B

4. But D would defect (15 > 0) 4. But D would defect (20 > 10)

Therefore, there is no separating equilibrium.

Pooling on L:

1. U—-L,D—L

2. w(UIL) = 1, w(U|R) < % (we require R — Y for equilibrium to exist.)
3. LA R—>Y

4. Since 15 > 0 neither player defects.

Therefore: {U — L,D — L;L — A,R — Y} with beliefs p(U|L) =
3, w(U|R) < § is a wPBNE.

Pooling on R:

1. U—-R,D—R

2. w(U|R) = 5, p(U|L) =7

3. R X,L— Aif p(U|L) > 4, L — Bif p(U|L) < §

4. Since 20 > 15 and 20 > 0 neither player defects.

Therefore:

{U—R,D— R;R— X, L — A} with beliefs u(U|R) = %,,u(U|L) < %
and

{U—=R,D— R;R— X,L — B} with beliefs u(U|R) = %,M(U\L) > %
are wPBNE

Remark 1b.1 Noting that a pooling equilibrium of some type exists in
this game is insufficient. A Perfect Bayesian equilibrium requires a descrip-
tion of each player’s strategies and also requires consistent beliefs on and
off the equilibrium path for which those strategies are sequentially ratio-
nal. This is especially important for the pooling equilibrium on R when the
nature of the equilibrium (player 2’s strategy) depends on the beliefs.

Remark 1b.2 {L,L} and {R,R} are not equilibria. They are the sender’s
(player 1’s) strategies in pooling equilibria, but a PBNE must specify each
player’s strategies and beliefs.



Remark 1b.3 When determining the range of off-equilibrium beliefs for
which an equilibrium exists, the range should use a weak inequality since
indifference implies that any action is a best response. For example, a
pooling equilibrium on L exists not only when u(U|R) < 1 but also when
w(U|R) = £ since it still allows R — Y to be part of an equilibrium.

Remark 1b.4 Note that C' is never optimal for player 2 in response to L.
For A to be optimal, we require :

2500 > 200(1 — ) and 250p > 100 = 1 > § (where p = p(U|L)),

and for B to be optimal,

2504 < 200(1 — 1) and 200(1 — p) > 100 = p < 5. For C to be optimal, we
would need, 100 > 2504 and 100 > 200(1 — x) which is impossible.

For each equilibrium found above, show whether or not it satisfies the In-
tuitive Criterion.

For pooling on L, no player earns strictly lower payoffs from deviating (both
earn strictly more if they play R and player 2 responds with X). Therefore,
it satisfies the intuitive criterion.

For pooling on R, neither player has an incentive to deviate for any off-
equilibrium beliefs (note C' will never be played). Thus, even if one player
is identified as the one who would never deviate, the other would not then
want to deviate. It satisfies the intuitive criterion.

Remark 1c.1 It is not enough to confirm that one type would want to
deviate if its type is known by the receiver. You also must confirm that the
other type would never deviate regardless of the beliefs of the receiver. For
example, when pooling on L, the U type would want to deviate if its type
is known (since receiver would play X), but the D type also has incentive
to deviate for some beliefs. Since we can’t identify a type who would never
deviate, it satisfies the intuitive criterion.

For what values of p does this game have a pooling equilibrium? Demon-
strate or explain.

If sender pools on L, receiver will choose either A or B depending on p. In
either case, there exist beliefs in response to R where the receiver chooses
Y. Since both A and B earn more than Y for the sender of either type, this
implies the existence of a pooling equilibrium for any p.



Question 2. Consider a principal-agent model in which the agent has three
levels of effort, e € {L, M, H}. There are three different outcomes associated
with different profits for the principal, (1,72, 73). Define p¢ as the probability
of outcome ¢ when level of effort is e.

The principal is risk neutral with utility given by profits minus wages. The
agents utility function is (of course) given by u(w,e) = \/w — c(e).

The cost to the agent of the three types of effort are ¢(L) = 0,¢(M) =
200, ¢(H) = 500. Reservation utility is 0.

outcome 1 outcome 2 outcome 3

(my,mo,m3) = 1,000,000 4,000,000 8,000,000
otk pk) = 3 i i
(¥, p}" . pd") = i 3 i
(i, pl plh) = i i 3

Wages cannot be negative.

(a) If effort can be observed, what is the optimal contract? Demonstrate.

e=1L: im+Lm+ lrg—c(L)? = 3,500,000 — 0 = 3,500,000
e=M: Im+ 1%7@ + 375 — ¢(M)? = 4,250,000 — 40, 000 = 4,210, 000
e=H: $m + 372+ im —c(H)? = 5,250,000 — 250,000 = 5,000,000
Thus, the optimal compensation is w(H) = 250,000, along with sufficiently
low payments for w(L) and w(M).

(b) Assume that effort cannot be observed (but outcomes can). Derive the
optimal contract for each level of effort. Show all constraints.

For high and medium effort, the constraints simply require that the state
most likely to occur under that effort level is sufficiently rewarded while all
other states can be paid zero.



Start with the constraints for high effort (using u; = /w;):

iul + iuz + %U3 —500 > %ul + iug + iug -0
- i(u3 —uy) > 500 IC1(H = L)
iul + iuz + %u:; — 500 > iul + %'UQ + iu;; — 200
- i(ug —u) > 300 1C2(H = M)
1 1 1
Zu1+1u2+§U3—50020 IR0
uy >0 IR1
up >0 IR2
uz >0 IR3

Note (i) IR1 and IC1 imply I R3; (ii) IR1, IR2 and IC1 imply I RO. There-
fore, we are left with:

ug > 2000 + uy IC1(H = L)
ug > 1200 + uq IC2(H = M)
uy >0 IR1
us >0 IR2

Note that nothing prevents both IR constraints from binding and then IC1
must bind, so we have u; = us = 0, uzg = 2000 or w; = we = 0, wg =
4,000,000 as the optimal compensation to induce high effort.

Nearly identical logic applies for medium effort:

iu1+%uz+iu;;—2002 %1“4—%“24—%11,3—0
= uy > 800 + uy IC1(M » L)
1 1 1 1 1 1
1u1+§u2+ EU3—2002 11“ +EUQ+§U3—5OO
=ug > uz — 1200 IC2(M » H)
iu1+%u2+iu3—20020 IR0
uy >0 IR1
us > 0 IR2
usg >0 IR3

IR0 and IR2 are implied by other constraints, u; = usz = 0 satisfies the
constraints, and us = 800. Thus, to induce medium effort, wages are w; =
w3 = 0, ws = 640, 000.



To induce low effort, wy = wy = w3 = ¢(L)? = 0.

Remark 2b.1 For medium effort level, note that IC2 does not need to
bind here since us = uz minimizes risk and satisfies the constraint. In fact,
assuming that IC2 binds leads to higher total compensation for medium
effort than for high effort which isn’t sensible.

Remark 2b.2 Medium effort is implementable since the two IC con-
straints do not contradict. A sufficiently large wo satisfies both constraints.

If effort cannot be observed, what is the optimal contract?

This involves plugging the obtained wages into the profit equation: e = L :
im+ im+ Loy — ¢(L)? = 3,500,000 — 0 = 3,500,000

e=M: %m + i+ %’Ng — %640, 000 = 4, 250,000 — 320, 000 = 3,930, 000
e=H: im + M+ %’/T;g —c(H)? = 5,250,000 —0 = 250,000 = 5,000, 000

Checking profit for each effort level at the optimal wages:

e=1"L: %m—&-%ﬂ'g—l—;lim—023,500,000—023,500,000

e=M: im+im+3ms—1640,000 = 4,250,000 — 320,000 = 3,930,000
e=H: im+ i+ 1ns— 14,000,000 = 5,250,000 — 2,000,000 =
3

So inducing medium effort is best and the optimal compensation is w; =
w3z = 0, we = 640, 000.



Question 3. Consider a differentiated-products version of a Bertrand duopoly
(firms ¢ and j). Firm ¢ # j has demand given by

qi = 168 — 2p; + p;

with no costs of production. Each firm’s profit is p;q;.
Determine firm 4’s subgame-perfect equilibrium profit if:

1. The firms choose p; and p; simultaneously.

Firm ¢'s profit is given by (168 — 2p; + p,)p;. Maximizing yields the best
reply: pi(p;) = 42 + %pj and similarly for p;(p;). Solving, we get an
equilibrium of p; = p} = 56. Substituting into the profit equation yields
(168 — 56)56 = 2 x 562 = 6272.

2. The firms choose p; and p; sequentially, with firm ¢ choosing first.

From above, firm j's strategy (in the second period) is given by p;(p;) =
42 + %pi. In the first period, firm i maximizes

1
qipi = (168 — 2p; + p;(pi)) pi = <168 —2p; + (42 + 4pi)> Di

which yields p; = 60 and, on the equilibrium path, p; = 57. Substituting
into the profit equation yields (168 — 120 4+ 57)60 = 105 x 60 = 6300.

3. The firms choose p; and p; sequentially, with firm j choosing first.

This yields the reverse of the above with prices on the equilibrium path
given by p; = 57,p; = 60 and profit given by (168 — 114 + 60)57 =
114 x 57 = 6498.



