Microeconomic Theory II Midterm Exam

Solutions

YOUR GRADE IS ON THE LAST PAGE OR BACK OF YOUR EXAM The first three questions were graded out of 20 points, with the rough interpretation that 16+ points is A range and 12+ points is B range. Performance on questions 1 and 3 was generally excellent (vast majority of A's). Question 4 counted as extra credit only. You should especially carefully review any material on questions on which you scored lower than 15 out of 20.

Note: these solutions are not guaranteed to be accurate or complete.

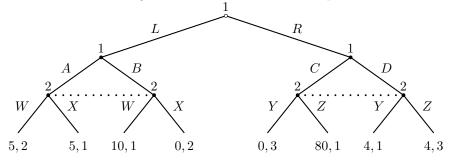
Question 1. Consider the normal form game below.

		Player 2				
		A	B	C	D	
Player 1	M	50, 10	58, 20	50, 7	50, 13	
	N	40, 5	72, 10	40, 20	32, 12	
	O	50, 28	58, 20	60, 10	56, 30	
	P	30, 18	64, 20	30, 15	40, 15	

- Is this game dominance solvable? For each step, carefully state and demonstrate which strategies are dominated and which are not.
- P is strictly dominated by various mixtures of the other strategies (e.g., $\frac{1}{2}M+\frac{1}{2}N$).
- Once P is eliminated, A is strictly dominated by D
- Then, M is dominated by mixtures of O and N that put sufficient probability on O (e.g., $\frac{9}{10}O + \frac{1}{10}N$)
- Then B is strictly dominated by D
- Then N is strictly dominated by O
- Then C is strictly dominated by D

Since only O and D remain, the game is dominance solvable.

Two errors students made were assuming that a strategy is dominated as long as it is never a best reply to any *pure* strategy of the opponent and eliminating strategies that are weakly, but not strictly, dominated. Recall that a strategy may be a best response to a mixed (but not pure) strategy of the other player, and a strategy may be dominated by a mixed (but not pure) strategy. Question 2. Consider the extensive form game below. The dotted lines represent information sets.



(a) Write down or describe the set of all *pure* strategies for each player.

Player 1 has three information sets, so the set of pure strategies is: $\{L, A, C; L, A, D; L, B, C; L, B, D; R, A, C; R, A, D; R, B, C; R, B, D\}$, where each strategy specifies an action at every information set. Player 2 has two information sets, so the set of pure strategies is: $\{W, Y; W, Z; X, Y; X, Z\}$

(b) Find *all* subgame-perfect Nash equilibria.

The game has two proper subgames, given by:

Player 2
 Player 2

$$W$$
 X
 X
 Y
 Z

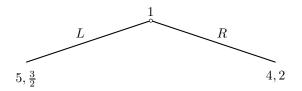
 Player 1
 A
 $5, 2$
 $5, 1$
 D
 Z

 Player 1
 B
 $10, 1$
 $0, 2$
 D
 $4, 1$
 $4, 3$

Each subgame has a unique (mixed strategy) equilibrium, given by: $\{\frac{1}{2}A + \frac{1}{2}B; \frac{1}{2}W + \frac{1}{2}X\}$ and $\{\frac{1}{2}C + \frac{1}{2}D; \frac{19}{20}Y + \frac{1}{20}Z\}$.

Player 1's payoffs in the above subgames are 5 and 4, respectively. This can be seen immediately from the fact that A always earns 5 and D always earns 4.

Next, we analyze the first period.



Player 1 selects L (which earns 5 in the resulting subgame) over R (which earns 4). Therefore, the subgame perfect Nash equilibrium is given by:

$$[L, \frac{1}{2}A + \frac{1}{2}B, \frac{1}{2}C + \frac{1}{2}D; \frac{1}{2}W + \frac{1}{2}X, \frac{19}{20}Y + \frac{1}{20}Z\}$$

Question 3. Consider a market consisting of a single manufacturer and two retailers. First, the manufacturer sets a wholesale price, w; Second, the two retailers observe w and simultaneously decide on production quantities, q_1 and q_2 , which they must purchase from the manufacturer. That is, the two retailers are Cournot competitors with marginal cost w.

The market price is given by $p(q_1, q_2) = 1 - q_1 - q_2$. A retailer's profit is given by $(p - w)q_i, i \in \{1, 2\}$, and the manufacturer's profit is given by $(q_1 + q_2)w$. Each firm is profit maximizing.

• Find the subgame-perfect Nash equilibrium.

First, we find the equilibrium of the second stage for an arbitrary w. Maximizing each retailer's profit with respect to its quantity yields the best response functions:

$$q_1(q_2) = \frac{1}{2}(1 - w - q_2)$$
 and $q_2(q_1) = \frac{1}{2}(1 - w - q_1)$

Next, we solve the two best response equations simultaneously to find the Nash equilibrium of the second period (which is the Cournot duopoly solution):

$$q_1(w) = q_2(w) = \frac{1}{3}(1-w)$$

Next, we consider the first period decision for the manufacturer. Since the manufacturer knows what quantities will be chosen for any w, we substitute them out from the manufacturer's profit function:

$$\Pi = (q_1(w) + q_2(w)) w = \frac{2}{3}(1 - w)w$$

Maximizing the above with respect to w yields $w = \frac{1}{2}$. Therefore, the subgame perfect Nash equilibrium is given by $\{w = \frac{1}{2}; q_1 = q_2 = \frac{1}{3}(1-w)\}$.

Some student substituted the equilibrium value of w to obtain a specific value for q_1 and q_2 . Note that this is the equilibrium outcome, but a subgame perfect Nash equilibrium specifies an action in *every* subgame (i.e., for every w).

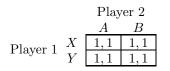
Question 4. Imagine that the game below is repeated twice, with the outcome of the first stage observed prior to play in the second. A player's total payoff is the sum of the payoffs of the two periods.

		Player 2		
		A	B	
Player 1	X	1, 1	0, 0	
1 layer 1	Y	0, 0	0, 0	

• Does there exist a subgame-perfect Nash equilibrium in which players put strictly positive probability on each strategy in stage 1?

[Note: you are not being asked to specify an SPNE or to provide a long solution. A *yes* or a *no* with a few sentences of explanation should suffice.]

To play a mixed strategy, a player must be indifferent between her two strategies. This implies that we need to improve strategy Y and strategy B. The stage game has two Nash equilibria. We can use $\{X, A\}$ as our reward. For example, if $\{Y, B\}$ is played in the second stage following $\{X, A\}$ and $\{X, A\}$ is played following anything that isn't $\{X, A\}$, the first stage looks like this:



Clearly, everything is an equilibrium in the first stage.

Some students seemed to rely on our result that a game *generically* has an odd number of equilibria. Note that this is not a result for every game, but is true with probability 1 for a game created at random (or for this game if each payoff is slightly randomly perturbed, thus eliminating ties and weak dominance).