Microeconomics III Midterm Exam

Spring 2012 Mikhael Shor

Question 1. Consider the following game.

		Player 2			
		A	B	C	D
Player 1	M	3, 2	2,0	2, 3	2, 6
	N	2, 2	1, 4	3,3	4, 2
	O	3,3	4, 1	2, 4	1, 3
	P	1, 5	0, 4	2, 3	3, 5

- (a) What strategies survive the iterated deletion of strictly dominated strategies? For each iteration, specify the dominated strategy and the strategy that dominates it.
- (b) What is the unique Nash equilibrium of this game?

Question 2. Consider the game below. Both the extensive form and the normal form are given. The dotted line represents an information set.

- (a) List all pure-strategy Nash equilibria.
- (b) List all pure-strategy trembling-hand perfect equilibria.
- (c) List all pure-strategy subgame-perfect equilibria.
- (d) List all pure-strategy sequential equilibria.

Question 3. Three students (i = 1, 2, 3) are working on a joint project. Each student selects the amount of time to work on the project, $x_i \ge 0$. The quality of the project, q, depends on x_1, x_2 , and x_3 :

$$q(x_1, x_2, x_3) = 3x_1 + 2x_2 + 2x_3 - x_1x_2 - x_1x_3$$

Each student also has a cost function given by

$$c_i(x_i) = (x_i)^2$$

The utility for student i is given by:

$$u_i(x_1, x_2, x_3) = q(x_1, x_2, x_3) - c_i(x_i)$$

- (a) Suppose that the students simultaneously and independently decide how much time to spend on the project. Show each student's best response function and determine the pure-strategy Nash equilibrium of this game.
- (b) Consider the following two-period game. First, student 1 decides how much time to spend on the project. Second, after observing the choice of student 1, students 2 and 3 simultaneously and independently decide how much time to spend. Determine the pure-strategy subgame-perfect Nash equilibrium of this game.

Question 4 (If time, save for last). Two firms are deciding on which technology to adopt, A or B. Technology A is only profitable if adopted by both firms. The payoffs based on their decisions are given by

Firm 2

$$A \quad B$$

Firm 1 $\begin{array}{c} A \\ B \end{array} \quad \begin{array}{c} 3,3 \\ 4,0 \end{array} \quad \begin{array}{c} 0,2 \\ 1,1 \end{array}$

The game is played over two periods. Each firm may make an adoption decision only once, but may do so in either period 1 or period 2. Players move simultaneously in each period (though may select no action, N, in period 1), and first period choices are observed before a second-period action is chosen (if N were chosen in period 1). Payoffs are received after the second period.

- (a) Is there a subgame-perfect equilibrium in which (A,A) is ultimately chosen? If yes, what is it? If no, why not?
- (b) Find all subgame-perfect equilibria of this game. [Hint: there are nine possible combinations of first-period actions. What are the payoffs from each of these when second-period actions are taken into account?]