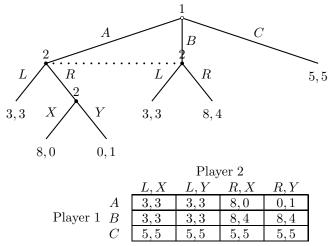

Microeconomic Theory IISpring 2014Midterm ExamMikhael Shor


Read all questions carefully and work carefully.

Question 1. Consider the following game.

		Player 2			
		A	B	C	D
Player 1	W	30, 30	50, 10	20, 40	10, 30
	X	10, 50	0,40	10, 30	30, 50
	Y	30, 20	20, 10	10, 30	10, 60
	Z	20, 20	10, 40	30, 30	50, 20

- (a) What strategies are weakly dominated?
- (b) What strategies survive the iterated deletion of strictly dominated strategies? For each iteration, specify the dominated strategy and the strategy that dominates it.
- (c) Is the game dominance solvable? Explain.
- (d) What is the unique equilibrium of this game?
- (e) Imagine that the above game is repeated twice. Write down one (any) pure strategy subgame perfect equilibrium of this repeated game.

- (a) List all pure-strategy Nash equilibria.
- (b) List all pure-strategy subgame-perfect Nash equilibria.
- (c) <u>Briefly</u> discuss which of the above Nash equilibria are also trembling-hand perfect equilibria.
- (d) <u>Briefly</u> explain or demonstrate whether this game has any mixed strategy subgame-perfect Nash equilibria.

Question 3. Two firms produce an identical good. Inverse demand is given by P=32-Q. Competition between the two firms occurs in two stages:

- In stage 1, firms simultaneously choose whether to use the old or the new technology to produce their goods. The old technology has a marginal cost of 20 but requires no investment. The new technology reduces marginal cost to 8 but requires a fixed investment of 50.
- After the decisions from stage 1 are made public, in stage 2, both firms simultaneously choose a quantity.

Effectively, stage 2 is a two-firm Cournot game in which each firm has the marginal costs it chose in stage 1.

- (a) Find the Nash equilibrium and resulting profits of the stage 2 subgame after both firms have chosen the *old* technology.
- (b) Find the Nash equilibrium and resulting profits of the stage 2 subgame after both firms have chosen the *new* technology.
- (c) Find the Nash equilibrium and resulting profits of the stage 2 subgames after the firms have chosen different technologies.
- (d) Find all subgame perfect Nash equilibria of this game.
- (e) Briefly discuss, intuitively, what type of game this appears to be, whether the outcome is efficient, and why or why not.
- (f) (A <u>brief</u> and intuitive answer is likely sufficient for this:) Imagine that stage 2 involved Bertrand competition (in prices) instead of Cournot competition. What would the subgame perfect equilibria look like?