Microeconomic Theory II
 Midterm Exam

Question 1. Consider the following game.
Player 2

Player 1

	A		B		C		D		
M	8,	0	2,	4	500,			1	20,
:---									

(a) What strategies survive the iterated deletion of strictly dominated strategies? For each iteration, specify the dominated strategy and the strategy that dominates it.
(b) What is the unique Nash equilibrium of this game?
(c) Imagine that this game is repeated twice with the outcome of the first stage observed by both players before the second stage. What is the maximum expected payoff Player 1 can earn in the first stage of any subgame perfect equilibrium of the twice-repeated game? Explain.

Question 2. Consider the game below. The dotted line represents an information set.

(a) List all subgame-perfect Nash equilibria.

Question 3. Two firms compete in a differentiated-products Cournot market. In the first period, firm 1 selects a level of differentiation, $d \in[0,1]$. In the second period, both firms (after both observing d) simultaneously select quantities, $q_{i} \geq 0,1 \in\{1,2\}$.

Inverse demand for firm i given its quantity choice, q_{i}, and that of the other firm, q_{j}, is given by:

$$
p_{i}\left(q_{i}, q_{j}\right)=1-q_{i}-(1-d) q_{j}
$$

And firm i's profit is given by $p_{i} q_{i}$ (there are no costs of production).
(a) Find the subgame perfect Nash equilibrium of this game.
(b) If increasing d comes at a cost, what is the most that firm 1 would be willing to spend to increase d from 0 to 1? Explain intuitively.

