Microeconomic Theory IISpring 2020Midterm ExamMikhael Shor

Question 1. Consider the following game.

		Player 2			
		A	B	C	D
Player 1	M	8, 0	2, 4	500, 1	20, 1
	N	4, 4	16, 0	8, 1	10, 0
	O	8, 3	1,100	12, 50	30,90
	P	2, 10	15, 10	5, 10	40, 9

- (a) What strategies survive the iterated deletion of strictly dominated strategies? For each iteration, specify the dominated strategy and the strategy that dominates it.
- (b) What is the unique Nash equilibrium of this game?
- (c) Imagine that this game is repeated twice with the outcome of the first stage observed by both players before the second stage. What is the maximum expected payoff Player 1 can earn in the first stage of any subgame perfect equilibrium of the twice-repeated game? Explain.

Question 2. Consider the game below. The dotted line represents an information set.

(a) List all subgame-perfect Nash equilibria.

Question 3. Two firms compete in a differentiated-products Cournot market. In the first period, firm 1 selects a level of differentiation, $d \in [0, 1]$. In the second period, both firms (after both observing d) simultaneously select quantities, $q_i \ge 0, i \in \{1, 2\}$.

Inverse demand for firm i given its quantity choice, q_i , and that of the other firm, q_j , is given by:

$$p_i(q_i, q_j) = 1 - q_i - (1 - d)q_j$$

And firm i's profit is given by $p_i q_i$ (there are no costs of production).

- (a) Find the subgame perfect Nash equilibrium of this game.
- (b) If increasing d comes at a cost, what is the most that firm 1 would be willing to spend to increase d from 0 to 1? Explain intuitively.