
Appendix to Shor, Kurtulus, and Galbreth (2015)

1 Conditional expectations and variances

The variance-covariance matrix for (D,ΨR,ΨS) is given by:

Σ =


σ2 σ2 σ2

σ2 σ2 + σ2
R σ2 + ρσRσS

σ2 σ2 + ρσRσS σ2 + σ2
S

 =
(
σ2
)

3×3
+


0 0 0

0 σ2
R ρσRσS

0 ρσRσS σ2
S


Throughout, we make use of the properties of the conditional distributions D|ΨR and

D|ΨR,ΨS . The first two are used in the non-collaborative model, and the last in the collabo-

rative models.

E[D | ΨR = ψR] = E[D] +
Cov[D,ΨR]

V[ΨR]
(ψR − E[ΨR]) (1)

= µ

(
σ2
R

σ2 + σ2
R

)
+ ψR

(
σ2

σ2 + σ2
R

)
(2)

V[D | ΨR = ψR] = V[D]− Cov[D, ψR]2

V[ΨR]
(3)

= σ2

(
σ2
R

σ2 + σ2
R

)
(4)

E[D | ΨR = ψR,ΨS = ψS ] = E[D] +
(
Σ1,2 Σ1,3

)Σ2,2 Σ2,3

Σ3,2 Σ3,3

−1ψR − E[ΨR]

ψS − E[ΨS ]

 (5)

=
wRψR + wSψS + wµµ

wR + wS + wµ
(6)

V[D | ΨR = ψR,ΨS = ψS ] = V[D]−
(
Σ1,2 Σ1,3

)Σ2,2 Σ2,3

Σ3,2 Σ3,3

−1Σ2,1

Σ3,1

 (7)

=
wµσ

2

wR + wS + wµ
(8)

where wR = σ2(σ2
S − ρσRσS), wS = σ2(σ2

R − ρσRσS), and wµ = (1− ρ2)σ2
Rσ

2
S .
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As we focus on the case where the prior is diffuse, we take limits of the above as σ →∞

lim
σ→∞

E[D | ΨR = ψR] = ψR (9)

lim
σ→∞

V[D | ΨR = ψR] = σ2
R =

1

AR
(10)

lim
σ→∞

E[D | ΨR = ψR,ΨS = ψS ] =

(
σ2
S − ρσSσR

)
ψR +

(
σ2
R − ρσSσR

)
ψS

σ2
S + σ2

R − 2ρσSσR
(11)

lim
σ→∞

V[D | ΨR = ψR,ΨS = ψS ] =
(1− ρ2)σ2

Rσ
2
S

(σ2
R + σ2

S − 2ρσSσR)
=

(1− ρ2)

(AR +AS − 2ρ
√
ARAS)

(12)

2 Non-collaborative Model

Proof of Lemma 1. Define DR ≡ D|ψR. At Stage 2, the retailer solves maxQ π
non
R (Q;AR, ψR)

where

πnonR (Q;AR, ψR) = EDR
[rmin(Q,DR)− wQ]− κAqr (13)

= EDR
[rQ− r(Q−DR)+ − wQ]− κAqr (14)

= (r − w)Q− rE[(Q−DR)+]− κAqr (15)

The first order condition is given by P (DR ≤ Q) = 1 − w
r implying Qnon(ψ) = E[DR] +√

V[DR]ϕR where ϕR = Φ−1
(
1− w

r

)
. The second-order condition confirms that the solution

is unique. Therefore,

πnonR (Qnon;AR, ψR) = (r − w)Qnon − rEDR
[(Qnon −DR)+] (16)

= (r − w)Qnon − rQnon + rE[DR]− rE[(DR −Qnon)+] (17)

= (r − w)E[DR]− w
√

V[DR]ϕR − r
∫ ∞
Qn

(x−Qnon)fDR
(x)dx (18)

By
∫∞
Qnon(x−Qnon)fDR

(x)dx =
√

V[DR]
∫∞
ϕR

(x−ϕR)φ(x)dx =
√
V[DR][ϕRΦ(ϕR)+φ(ϕR)−ϕR],

and observing that Φ(ϕR) = 1− w
r , we can rewrite the profit as

= (r − w)E[DR]− w
√

V[DR]ϕR − r
√

V[DR]
[
−w
r
ϕR + φ(ϕR)

]
(19)

= (r − w)E[DR]− rφ(ϕR)
√

V[DR] (20)

= (r − w)ψR −
xR√
AR

. (21)

2



In Stage 1, the retailer selects accuracy, AR, to maximize Πnon
R (AR), given by

Πnon
R (AR) = (r − w)µ− xR√

AR
− κAqR. (22)

Solving the first-order condition gives AnonR =
(
xR
2qκ

) 2
1+2q

. Checking the second-order condition,

∂2Πnon
R (AR)

∂A2
R

∣∣∣
AR=An

R

= −1+2q
4 xR

(
2κq
xR

) 5
1+2q

< 0. For q ≥ 1, the profit function is concave in A.

When q < 1, the function is initially concave and unimodal, then convex and decreasing. The

inflection point is given by
(

3xR
4(1−q)qκ

) 2
1+2q

which is greater than AnonR .

3 Collaborative Model

Proof of Lemma 2. Define DJ ≡ D|ψS , ψR. At Stage 2, the central decision maker solves

maxQ πSC(Q;AR, AS , ψR, ψS) where

πSC(Q;AR, AS , ψR, ψS) = EDJ
[rmin(Q,DJ)− cQ] . (23)

Following steps similar to the proof of Lemma 1, the optimal order quantity is given by

Qcol(ψS , ψR) = E[DJ ] +
√

V[DJ ]ϕJ (24)

where ϕJ = Φ−1
(
1− c

r

)
and the expected centralized supply chain profit is given by

πSC(Qcol;AR, AS , ψR, ψS) = (r − c)E[DJ ]− rφ(ϕJ)
√

V[DJ ]. (25)

In Stage 1, the central decision maker solves maxAS ,AR
ΠSC(AR, AS) where

ΠSC(AR, AS) = EΨR,ΨS

[
πSC(Qcol;AR, AS , ψR, ψS)

]
− κAqR − κA

q
S (26)

= (r − c)µ− xJ

√
1− ρ2

(AR +AS − 2ρ
√
ARAS)

− κAqR − κA
q
S . (27)

For a given Â, define ÂR = Â− δ and ÂS = (2Âq − (Â− δ)q)1/q. Then, total forecasting cost,

κÂqR + κÂqS , is constant for all δ < Â and equals 2κÂq. Thus, δ defines all pairs of accuracies

that can be obtained at the same cost. Substituting into the variance of DJ reveals that

variance is quasiconcave: everywhere nonincreasing, everywhere nondecreasing, or increasing

than decreasing, in δ. Thus, two candidate solutions exist: a symmetric solution satisfying

AR = AS or a corner solution satisfying the constraint AR = ρ2AS in which only one signal is
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informative.

Joint Forecasting The first-order conditions are given implicitly by:

A1−q
S

(√
ARAS − ρAR

)
=

2κq(AR +AS − 2ρ
√
ARAS)3/2

√
ARAS

xJ
√

1− ρ2
(28)

A1−q
R

(√
ARAS − ρAS

)
=

2κq(AR +AS − 2ρ
√
ARAS)3/2

√
ARAS

xJ
√

1− ρ2
(29)

When AR = AS , the above reduce to AR = AS =
(
xJ
2qκ

(√
1+ρ

2
√

2

)) 2
1+2q

.

Targeted Forecasting Evaluating ΠSC when AS = ρ2AR yields (r − c)µ− xJA−1/2
R −

(1 + ρ2q)κAqR, which obtains a maximum at AR =
(
xJ
2qκ

(
1

1+ρ2q

)) 2
1+2q

and by construction

AS = ρ2AR.

Optimal Solution Substituting the joint and targeted forecasting solutions into ΠSC

yields:

Πjoint
SC = (r − c)µ− 2

1−q
1+2q (1 + 2q)

(
xJ
√

1 + ρ

2κq

) 2q
1+2q

κ (30)

Πtargeted
SC = (r − c)µ− (1 + 2q)

(
1 + ρ2q

) 1
1+2q

(
xJ
2κq

) 2q
1+2q

κ (31)

Joint forecasting is optimal if

Πjoint
SC > Πtargeted

SC (32)

≡ 2
1−q
1+2q (1 + 2q)

(
xJ
√

1 + ρ

2κq

) 2q
1+2q

κ < (1 + 2q)
(
1 + ρ2q

) 1
1+2q

(
xJ
2κq

) 2q
1+2q

κ (33)

≡ 2
1−q
1+2q (1 + ρ)

q
1+2q <

(
1 + ρ2q

) 1
1+2q (34)

≡ 21−q (1 + ρ)q <
(
1 + ρ2q

)
.

In the collaborative model, joint forecasting is optimal precisely when the resulting demand

forecast is higher under the joint forecasting solution than the targeted forecasting solution.
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4 Comparison of the Non-Collaborative and Collaborative Mod-

els

Proof of Proposition 1. From Lemma 1 and 2, the condition AnonR > AcolF is satisfied when

(
xR
2qκ

) 2
1+2q

> max

{
2

1 + ρ

(
xJ
2qκ

(√
1 + ρ

2
√

2

)) 2
1+2q

,

(
xJ
2qκ

(
1

1 + ρ2q

)) 2
1+2q

}
(35)

where the first term on the right-hand side is equal to the final accuracy of the demand forecast

when the optimal is given by joint forecasting and the second term is the final demand accuracy

when the optimal is given by targeted forecasting. Simplifying the above condition we get,

xJ
xR

=
φ
(
Φ−1

(
1− c

r

))
φ
(
Φ−1

(
1− w

r

)) < min{21−q(1 + ρ)q, (1 + ρ2q)}.

Proof of Corollary 1.1. (i). When the optimal solution is given by targeted forecasting, AnonR >

AcolF requires xJ
xR

< 1 + ρ2q. Since 1 + ρ2q ≥ 1, the condition in Proposition 1 is satisfied for

any ρ, q if xJ
xR

< 1.

xJ < xR (36)

≡ rφ
(

Φ−1
(

1− c

r

))
< rφ

(
Φ−1

(
1− w

r

))
(37)

≡
∣∣∣Φ−1

(
1− c

r

)∣∣∣ > ∣∣∣Φ−1
(

1− w

r

)∣∣∣ (38)

≡
∣∣∣∣12 − c

r

∣∣∣∣ > ∣∣∣∣12 − w

r

∣∣∣∣ (39)

≡ |r − 2c| > |r − 2w| (40)

When r ≥ 2w, both terms inside the absolute values are nonnegative, so the inequality holds

since w > c. Assume 2w > r > w + c. Then

|r − 2c| = r − 2c > r − 2(r − w) = 2w − r = |r − 2w|.

Thus, xJ < xR if w + c < r which is equivalent to the condition in the corollary.

(ii). When the optimal solution is given by joint forecasting, AnonR > AcolF requires xJ
xR

<
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β ≡ 21−q(1 + ρ)q. This is equivalent to

xJ < βxR (41)

≡ rφ
(

Φ−1
(

1− c

r

))
< βrφ

(
Φ−1

(
1− w

r

))
(42)

≡
(

Φ−1
(

1− c

r

))2
>
(

Φ−1
(

1− w

r

))2
− 2 log β (43)

Using the approximation of the inverse error function given in [11],

u log
((

1− c

r

) c
r

)
< log

((
1− w

r

) w
r

)
+ log β (44)

≡
(

1− c

r

) c
r
< β

(
1− w

r

) w
r

(45)

(iii) Note that 1 + ρ2q ≤ 2, implying that min{21−q(1 + ρ)q, (1 + ρ2q)} ≤ 2. Thus, it is

sufficient to show that xJ
xR

> 2, which is the inverse of the condition from part (ii) for β = 2

Thus,

xJ > 2xR (46)

u
(

1− c

r

) c
r
> 2

(
1− w

r

) w
r
. (47)

Rearranging the above condition yields w
r + c

r ' 1 + wc
r(2w−c) .
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