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Abstract We examine theoretically and experimentally two countervailing effects
of industry concentration in common value auctions. Greater concentration of infor-
mation among fewer bidders reduces competition but increases the precision of
private estimates. We demonstrate that this generally leads to more aggressive bid-
ding. However, the reduction in competition dominates the informational effects,
resulting in lower prices. We examine these hypothesized effects experimentally by
conducting a series of auctions with constant informational content but distributed
among a varying number of bidders. The experimental results are consistent with
our theoretical predictions.
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1 Introduction

In common-value auctions, more accurate signals about the value of the item for
sale alleviate the winner’s curse, potentially leading to higher bids. But what if
more accurate signals come at the expense of competition by concentrating existing
information among fewer bidders? In determining auction revenue, more aggres-
sive bidding is tempered by fewer tendered bids.

Consider, for example, an auction for an oil field for which six seismic surveys
are available. For simplicity, assume that the surveys are correct on average—the
average of the six surveys represents the true value of the field. What happens if
we move from six bidders, each privy to the results of one survey, to three, each
with two surveys in hand? First, possessing multiple surveys likely leads to a more
informed estimate of the field’s true value. This “information pooling” alleviates
the winner’s curse (DeBrock and Smith 1983; Hendricks and Porter 1992). Second,
reducing the number of active bidders may, in itself, lead to higher bids (Pinkse and
Tan 2005; Bulow and Klemperer 2002; Hendricks et al. 2003). Outbidding fewer
competitors implies less chance that one’s estimate is overly optimistic, decreas-
ing the likelihood of overbidding. Lastly, the reduction in competition counteracts
these forces, tending to lower the auction price.

We derive the impact of greater industry concentration on bids and revenues in
these environments. We add to the existing literature on the average value model,
in which an object’s value is equal to the mean of all signals (Bikhchandani and
Riley 1991; Krishna and Morgan 1997; Mares 2001; Bulow and Klemperer 2002),
a comprehensive description of symmetric equilibrium bidding by parties with
multiple signals, and a general result on the price impact of greater concentration.
We extend some existing results for second-price auctions to first-price auctions.
Better information generally leads to more aggressive bidding, though with caveats
for first-price auctions. However, the impact of reduced competition outweighs the
effects of better information, resulting in lower prices.

As in the above example, we take a view of greater concentration as the allo-
cation of a fixed number of estimates of an object’s value among fewer bidders.
In his paper on information acquisition in auctions, Matthews (1984) provides a
series of examples suggesting that the total amount of information bidders acquire
may converge to a positive constant as the number of bidders increases. Matthews
also points to serious technical difficulties of constructing full equilibrium models
that endogenize information acquisition as a function of competitor and market
variables. One way around this analytical difficulty is to fix the total quantity of
information and let the concentration of that information vary with competition.
This approach is mirrored in work by Krishna and Morgan (1997). A change in
the concentration of information does not alter the structure of information but the
allocation of that information among bidders. Industry and information concen-
tration are inexorably linked; if bidders acquire more information in the presence
of reduced competition, then fewer bidders compete in informationally more con-
centrated environments.

Our approach shares some similarities with models of horizontal merger waves.
In many instances, industries are subject to a rapid series of acquisitions following
exogenous shocks that affect valuations (Gort 1969; Jovanovic and Rousseau 2002).
After a wave of acquisitions, merged entities face fewer competing bidders and are
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better informed by pooling the information of their constituents. Here, we treat such
merger waves (and competition more generally) as exogenous, instead focusing on
the equilibrium implications of increased information concentration in auctions.1

Laboratory experiments were run to test our theoretical predictions and eval-
uate the sensitivity of prices to information concentration. The growing body of
experimental literature on common value auctions shows that people often fail
to bid in accordance with equilibrium predictions and frequently fall prey to the
winner’s curse. Experiments using the average value model reveal overbidding by
subjects in both first-price Holt and Sherman (2000) and second-price (Avery and
Kagel 1997) auctions with two bidders. In both of these experiments, many subjects
appeared to bid based on the unconditional expectation of rivals’ signals, failing to
account for the winner’s curse. Goeree and Offerman (2002) provide bidders with
two signals, one a common (average value) component and another an additive
private value component. Again, subjects frequently lose money.

In the next section, we derive theoretical results on the impact of information
and industry concentration on bids and revenues. Since we can expect human sub-
jects to deviate from equilibrium bidding behavior, the subsequent section describes
experiments testing the qualitative implications of our theoretical results. We find
that comparative static results still obtain, as subjects bid higher in treatments
reflecting more concentrated industries, though revenues nevertheless decline.

2 Theory

2.1 Model

We examine the average value model because it allows for closed-form solutions of
the bidding function at various industry concentration profiles.2 An object’s value,
V , is equal to the mean of all signals received by participants:

V =
∑n

i=1 Xi

n

Private signals, Xi , are i.i.d. with distribution function F and density f . We limit
ourselves to situations where the support of the distribution is bounded, and for
expositional simplicity, we assume that the support is [0, 1], although most results
are easily extended to non-compact supports. Denote by β

F P,X
n (x) and β

S P,X
n (x)

the symmetric equilibrium bids in first-price and second-price auctions with n
bidders where signals are distributed i.i.d. as X .

1 While stronger competition diminishes private incentives to acquire information, equilib-
rium effects of endogenizing collusion or mergers raise the additional complication of determin-
ing incentive-compatible mechanisms to elicit information within bidding groups. Mailath and
Zemsky (1991) characterize a mechanism for collusive rings in a private-value auction to both
elicit truthful revelation and allocate the object efficiently within the ring. Also see McAfee and
McMillan (1992). In a model similar to ours, Brusco et al. (2006) examine the incentive to merge
and consider conditions under which collusive rings can share information efficiently. Harford
(2005) also considers the importance of informational acquisition concerns in merger decisions.

2 See Krishna and Morgan (1997) and Mares (2001). Additive specifications have been used
extensively in the literature (e.g., Bikhchandani and Riley 1991; Bulow and Klemperer 2002).
Multi-signal environments are not merely more challenging than environments with one signal,
but may not have any equilibria (Jackson 2005).
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In this paper, we consider only symmetric information profiles in which each
bidder sees the same number of signals. This avoids most complications arising
from equilibrium selection problems3 and facilitates the determination of equilib-
rium bids since the problem remains symmetric. An industry consists of m bidders
receiving k signals each, where n = km remains constant. Across concentration
profiles, the total amount of information in the economy remains unchanged. Each
bidder’s private information is represented by Xk , the random variable that is the
average of k independent signals.

2.2 Results

A number of studies have identified effects of greater industry concentration in
second price auctions described by this model in which fewer firms corresponds
with each firm having more information. First, the aggregation of independent sig-
nals allows a bidding consortium to pool its information, deriving more precise
estimates of the object’s value and potentially implying a smaller winner’s curse
correction (DeBrock and Smith 1983; Krishna and Morgan 1997). Second, decreas-
ing the number of bidders, even without an offsetting increase in information for
each bidder, may lead to more aggressive bidding. In auctions with fewer bidders,
subjects need not be as cautious to avoid the winner’s curse. These effects tend to
work in the same direction as better information coupled with a reduction in the
number of bidders leads to higher bids, on average. In first-price auctions, an addi-
tional effect works in the opposite direction. When faced with fewer competitors,
bidders can bid less aggressively and still maintain their chance of winning. This
implies that the impact of greater concentration on bids in first-price auctions is
ambiguous.4

In the following lemmas, we determine the role of each of these effects inde-
pendently. The first isolates the role of the number of bidders without an offsetting
increase in informational precision. The second considers the role of more precise
information without a change in the number of bidders. We then show the overall
effect of greater industry and information concentration on bidding behavior.
Competition Effect Symmetric equilibrium bids in an average value model with n
bidders are given by5

βF P,X
n (x) = (n − 1)

n
E[X |X ≤ x]

+1

n
E[max(X1, . . . , Xn−1)| max(X1, . . . , Xn−1) < x], (1)

3 Second price common value auctions (both symmetric and asymmetric) may admit a contin-
uum of equilibria (Bikhchandani and Riley 1991; Milgrom 1981), some yielding collusive-like
outcomes. The symmetric equilibrium is a natural selection device both because it treats bidders
anonymously and because it selects the “most competitive” equilibrium producing the highest
revenue (Bikhchandani and Riley 1991; Mares 2005). Asymmetric situations lack an equally
appealing equilibrium selection tool complicating revenue comparisons across auctions.

4 Pinkse and Tan (2005) and Bulow and Klemperer (2002) demonstrate that bids may decline
with more bidders. Hendricks et al. (2003) demonstrate this effect in OCS wildcat auctions. The
opposite result has also been obtained experimentally (Kagel and Levin 1986) and in econometric
analysis of field data (Hong and Shum 2002).

5 These are obtained by substituting our model’s value function into the formulation of Milgrom
and Weber (1982).
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βS P,X
n (x) = 2

n
x + n − 2

n
E[X |X ≤ x] (2)

Increasing the number of bidders decreases bids in a second-price auction. Intu-
itively, the more people I outbid, the more likely it is that I have overestimated the
object’s value and fallen prey to the winner’s curse; more bidders imply a greater
adjustment for the winner’s curse. Analysis of first-price auctions is less straight-
forward. However, the next result shows that for large enough n we find the same
result as in the second-price auction. An increase in the number of participants
produces less aggressive bidding.

Lemma 1 (Competition effect) For every x ∈ [0, 1],
(i) β

F P,X
n (x) is unimodal in n.

(ii) β
S P,X
n (x) is decreasing in n.

The proofs of all results are in the appendix. In first-price auctions, bidders
shade from the expected value not only to account for the winner’s curse but also
to balance the price paid with the odds of winning. Reducing the number of bid-
ders encourages a smaller winner’s curse adjustment as in second-price auctions
but also implies more bid shading since any bid is more likely to win with fewer
opponents. These effects work in opposite directions, though the impact of reducing
the winner’s curse dominates when the number of participants is sufficiently large.

Information Pooling In this section, we consider the effect of increasing the pre-
cision of bidders’ information by providing each bidder with multiple signals
while holding the number of bidders constant. How the equilibrium bidding func-
tions, (1) and (2), respond to more information depends on comparisons between
E[X |X ≤ x] and E[Xk |Xk ≤ x]. If X has a log-concave density,6 then we can
establish the following:

Claim 1 Let f be log-concave. For k ∈ {1, 2, . . .} and for all x in [0, 1],
E[Xk |Xk ≤ x] ≥ E[X |X ≤ x]. (3)

In second-price auctions, the equilibrium bid is a convex combination of one’s own
signal, x , and of E[X |X ≤ x], leading to higher bids as the precision of information
increases. In first-price auctions, the role of more precise signals is less absolute,
as the following lemma indicates.7

6 The class of log-concave distributions encompasses most common distributions including
the uniform, normal, logistic, exponential, and Weibull. For a comprehensive list of log-concave
distributions and a review of their uses in auction theory, mechanism design, and other areas of
economics, see Bagnoli and Bergstrom (2005).

7 While our primary interest in the context of the average value model is in the distribution of
Xk , in the appendix we also prove an alternate form of Lemma 2 of more general interest. Consider
two random variables X and Y with equal supports and identical first moments. Following Whitt
(1985), Y is more precise than X in the sense of the log-concave order, denoted by Y �lc X, if fY

fX
is log-concave. The log-concave order compares distributions in terms of their relative concen-
tration around the mean and implies the usual (convex) order between random variables. Whitt
(1985) obtains a result analogous to Claim 1: if Y �lc X , then E[Y |Y ≤ x] ≥ E[X |X ≤ x].
Using this, we derive an analog to Lemma 2 for a distribution Y in place of Xk .
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Lemma 2 (Information pooling) Let f be log-concave. Then

(i) there exist a tk,n,F and t ′k,n,F , 0 < tk,n,F ≤ t ′k,n,F < 1, such that β
F P,Xk
n (x) ≥

β
F P,X
n (x) for x in [0, tk,n,F ] and β

F P,Xk
n (x) ≤ β

F P,X
n (x) for x in [t ′k,n,F , 1];

and
(ii) β

S P,Xk
n (x) ≥ β

S P,X
n (x) for all x.

The lemma demonstrates that in first-price auctions, better information will
increase bids for low signals while decreasing bids for high signals. To understand
why this occurs, note that the first term in the equilibrium bidding function, (Eq. 1),
increases if X is replaced with Xk by Claim 1. For high values of the signal, this
effect diminishes since the unconditional expectations are equal, E[X ] = E[Xk].
Thus, for sufficiently high signals, the impact of more information is driven by the
second term of the bidding function. Consider a bidder with a signal equal to 1, the
upper support. If signals are more concentrated, having a competitor with a signal
close to 1 is less likely than if the distribution were more dispersed. A bidder with
a signal of 1 can profitably shade his bid more when he faces opponents with more
concentrated information, leading to lower bidding.

Equilibrium Bidding Increased concentration gives rise to both the competition
and information pooling effects since we are reducing the number of bidders
while simultaneously increasing informational precision. Both effects lead to more
aggressive bidding in second-price auctions while first-price auctions present some
subtleties. The following result characterizes the overall impact of greater concen-
tration on bids. We wish to compare an industry in which n = km firms each have
one signal with more concentrated industries in which each of m < n firms has
k signals. The more concentrated industry gives rise to an auction in which each

bidder receives a signal Xk . Denote by β
F P,X
km (x) and β

F P,Xk
m (x) the symmetric

equilibrium bid functions in the less and more concentrated industries in first-

price auctions and by β
S P,X
km (x) and β

S P,Xk
m (x) the bid functions in second-price

auctions.

Theorem 1 Let f be log-concave. Then

(i) For fixed k and high enough n, there exist a sk,n,F and s′
k,n,F , 0 < sk,n,F ≤

s′
k,n,F < 1, such that β

F P,X
km (x) ≤ β

F P,Xk
m (x) when (a) x in [0, sk,n,F ], and

(b) x in [s′
k,n,F , 1]; and

(ii) β
S P,X
km (x) ≤ β

S P,Xk
m (x) for all x.

The theorem states that greater industry concentration unambiguously increases
the aggressiveness of bidding in second-price auctions. The result for first-price
auctions incorporates the nuances of Lemmas 1 and 2. Greater concentration leads
to more aggressive bidding for low values of the signal. For high signals, greater
concentration may induce less aggressive bidding, but only when the amount
of information in the economy is small. In particular, for any k, β

F P,X
km (1) <

β
F P,Xk
m (1) for high enough n. For high values of the signal, a large amount of
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information in the economy (large n) implies that the information pooling effect
outweighs the reduction in the number of bidders. The theorem allows for the pos-

sibility of a crossing between β
F P,X
km and β

F P,Xk
m , at least for low values of m. Our

experimental set-up, with n = 6, and uniformly distributed signals, exhibits this
property.

Equilibrium Prices Since bidding can be more aggressive as information becomes
more concentrated, it is conceivable that greater industry concentration would lead
to higher revenues. This conjecture was forwarded by Krishna and Morgan (1997)
and echoed in the legal antitrust literature (Froeb and Shor 2005). We find, in
our model, that the reduction in the number of bidders outweighs the increased
aggressiveness of bids.

Theorem 2 In the average value model, greater concentration reduces expected
revenues.

The result applies to both first-price and second-price auctions since, by our
model’s construction, revenue equivalence holds. Aggregating all the forces that
affect equilibrium bidding, we find that the overall reduction in the number of bid-
ders outweighs in equilibrium all gains that can be expected from more aggressive
bidding. Unlike our results on the bidding function, we do not require distribu-
tional assumptions. Instead, the proof relies on properties of stochastic dominance
and order statistics. The intuition behind this result is that a bidder’s informational
contribution is more significant in situations where concentration is higher. This
means he can command a higher informational rent in any mechanism, thereby
reducing revenues.

3 Experiments

Experimental subjects participated in a series of three auctions. In each auction,
a total of six signals drawn from a discrete uniform distribution over the integers
{20, 21, . . . , 60} were distributed among the bidders. The value of the object (in
dollars) was known to be equal to the average of these signals. In the first period,
each of six bidders received one signal, and placed a bid. In the second period,
subjects competed against two other bidders (three total), with each participant
receiving two signals. Lastly, period three saw two bidders competing with three
signals each.

Each of 102 subjects was randomly assigned to either a first-price (60 subjects)
or second-price (42 subjects) sealed-bid treatment (Table 1). Subjects submitted
bids independently over the Internet and were not informed of the outcome of any
auction until after the conclusion of the experiment. Subjects were told that they
would not be bidding against the same bidder more than once and were randomly
matched (while respecting this constraint) ex post, at which point earnings were
tabulated.8

Experiments were run at Vanderbilt University in the Fall of 2001. Subjects
were current MBA students and all had some classroom exposure to common value

8 Subjects received a $5 participation fee and participated in other experiments not reported
here in which losses were not possible, to make up for potential losses from the winner’s curse.
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Table 1 Experimental treatments

Treatment m k # of subjects # of auctions

I a 6 1 10
1st Price I b 3 2 60 20

I c 2 3 30
II a 6 1 7

2nd Price II b 3 2 42 14
II c 2 3 21

auctions. In informal interviews after the experiment, most subjects indicated some
experience with participating in auctions, ranging from low value online purchases
to formulating bidding “strategies” for mid-size businesses in procurement auc-
tions. Notably, none admitted to any experience with collusion (or joint bidding)
in auctions.

3.1 Results

Both treatments demonstrate that concentration increases bids and decreases prices
(Fig. 1). Specifically, the bidding functions increase with concentration (Fig. 2),
yet this is not enough to offset the loss of competition. When six bidders with one
signal each compete, bids significantly exceed theoretical predictions, in line with
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Fig. 1 Experimental and predicted average bids and prices. Greater concentration leads to higher
bids on average but decreases the winning price
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Fig. 2 Experimental and predicted bidding functions. In both first-price and second-price auc-
tions, bidding becomes more aggressive with increased concentration

previous findings (Holt and Sherman 2000; Avery and Kagel 1997).9 With multiple
signals in the three and two bidder cases, bids exceed theoretical predictions only
in first-price auctions.10 Especially in second-price auctions, the bidding functions
appear flatter than predicted, suggesting that subjects fail to account for the condi-
tional expectation of rivals’ signals.11 While the trend in revenues appears in line
with the theoretical results, the results of these experimental sessions are mostly
anecdotal. A different random pairing of subjects would potentially produce differ-
ent results. For example, two of the three highest bids in the first-price treatment
were matched into the same group of six bidders. If these bidders were instead in
different groups, both would likely win, increasing the average winning price.

Our interest, however, is not in the specific results of these sessions, but in
the effect of information concentration on expected bids and revenue. From the
perspective of the auctioneer, participants map a distribution of signals into a dis-
tribution of bids, and the auction maps these into a distribution of (first or second)
order statistics from which the auctioneer draws his revenue. We formulate an
analogous approach. First, we compute the empirical distribution of bids for each
auction treatment. Then, we derive an empirical distribution of resulting prices. 12

9 Wilcoxon signed-rank test comparing bids to expected bids, given the signal. One-tailed
P < 0.001.

10 In first-price auctions, P < 0.001. In second-price auctions, P = 0.06 (three bidders) and
P = 0.48 (two bidders).

11 This is the first finding in both Holt and Sherman (2000) and Avery and Kagel (1997).
12 Considering bids independent of signals is only valid if realized signals do not vary across

treatments. Empirical distributions of signals in each treatment are neither significantly different
from the uniform distribution (Kolmogorov–Smirnov Pvalues between 0.22 and 0.87) nor from
each other in pair-wise tests (Pvalues between 0.49 and 1.00).



46 V. Mares and M. Shor

0

 0.2

 0.4

 0.6

 0.8

1

 20  30  40  50  60

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Bid

First Price: Experiment

0

 0.2

 0.4

 0.6

 0.8

1

 20  30  40  50  60

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Bid

Second Price: Experiment

0

 0.2

 0.4

 0.6

 0.8

1

 20  30  40  50  60

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Bid

First Price: Predicted

6 bidders (m=6, k=1)
3 bidders (m=3, k=2)
2 bidders (m=2, k=3)

0

 0.2

 0.4

 0.6

 0.8

1

 20  30  40  50  60

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Bid

Second Price: Predicted

Fig. 3 Empirical and predicted cumulative distributions of bids

Bids are more concentrated about the mean bid as information is dispersed
among fewer bidders (Fig. 3). This is hardly surprising since a more precise esti-
mate of the object is obtained. More interesting results are obtained with respect
to bidder aggressiveness.

Result 1 Bidding becomes more aggressive as information is concentrated from
six bidders to two.

The empirical distribution of bids issued by participants with three signals (and
one competitor) stochastically dominate bids by holders of one signal in the six bid-
der case.13 For most bids (including those below the expected value of the object),
the probability that the bidder bids higher than some given amount is larger in the
two-bidder case. Incremental changes in concentration—from six bidders to three
and from three to two—do not lead to significant differences in the distribution of
bids. Graphically, bidding in the three-bidder case appears more aggressive than
in the six-bidder case, and in fact average bids are significantly higher.14

The effect of concentration on bidding appears in line with Theorem 1. A greater
concentration of signals among fewer bidders increases the aggressiveness of
bids. However, the next result shows that this effect is tempered by the loss of
competition.

13 These distributions are significantly different. K–S P = 0.013 for first-price and P = 0.028
for second-price.

14 Wilcoxon signed-rank test yields P = 0.015 for first-price and P = 0.049 for second-
price, one tailed. Change in average bids from three to two bidders is marginally significant
(P = 0.074) only in the second-price treatment. Differences from six bidders to two are highly
significant (P < 0.01).
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Fig. 4 Empirical and predicted cumulative distributions of revenue (winning bids)

Result 2 The expected auction price decreases with greater concentration.

This inference could be drawn from the observed winning bids (Fig. 1). The
more general question is whether bidding behavior observed in this experiment
implies higher prices on average rather than as the result of one pattern of random
pairing of subjects. To answer this question, the empirical bid distributions were
used to calculate the probability of a given auction price. For example, for the
six-bidder (one signal each) first-price auction, the probability of a given price is
equivalent to the probability that one bidder “draws” this value from the appropri-
ate bid distribution and the remaining bidders draw smaller values. Even though
subjects generally bid higher when information is more concentrated, this need
not translate into higher revenues when the loss of competition is considered. The
derived distributions of prices are presented in Fig. 4.

The distribution of prices in more information-concentrated auctions is dom-
inated by those of less-concentrated treatments.15 For almost any target price,
bidders in more concentrated industries are less likely to meet the target than bid-
ders in less concentrated industries.16 Theoretically predicted revenues for the six-,

15 Kolmogorov-Smirnov test statistic in all pair-wise comparisons of distributions yields
P-values of less than 0.001.

16 We also compare average revenues to theoretical benchmarks. In two and three bidder cases,
each possible grouping of subjects is considered. In six-bidder cases, 100s samples of groups are
drawn, where s is the number of subjects (60 or 42 for first- or second-price autions). For each
sampled group, resulting price is compared to expected price, given the signals. Because revenues
of two samples are correlated if they share a subject, the recombinant estimator was used (Mullin
and Reiley 2006). Results follow the pattern of bids. Observed revenues are significantly higher
than predicted in first-price auctions (P < 0.001, one-tailed). In second-price auctions, results
are mixed (P = 0.001, six bidders; P = 0.057, three bidders, and P = 0.117, two bidders).
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three-, and two-bidder cases are 39.05, 37.67, and 36.20 respectively. These reflect
decreases in revenue due to concentration of 3.5 and 9.3%. In the first-price auc-
tion with six bidders, the expected auction price derived from experimental data is
45.78. This decreases by 3.8% if information is concentrated among three bidders
and by 10.0% if two bidders each receive three signals. In the second-price auction,
the revenue effects are more pronounced, with reductions of 7.1 and 11.5% from
the six-bidder revenue of 41.25.

4 Conclusion

Greater information concentration increases the aggressiveness of bidding in sec-
ond-price auctions, reflecting the role of better information in diminishing the
winner’s curse. In first-price auctions, this effect is tempered by less bid-shading
in the presence of fewer bidders. Yet, this more aggressive bidding does not offset
the downward price pressures of diminished competition. Both theoretical results
and experiments confirm that greater industry concentration leads to lower prices.

Antitrust policy is driven by an almost universally accepted maxim among econ-
omists: in the absence of offsetting efficiency gains, greater industry concentration
decreases competition, leading to higher market prices. This traditional industrial
organization analysis, exploiting the robust relationship between market concen-
tration and industry performance, is directly applicable to private-value auction
markets. For example, mergers among parties are privately profitable (Mailath and
Zemsky 1991) and reduce the number of active bidders, leading to diminished rev-
enue for the seller (Waehrer and Perry, 2003; Tschantz et al. 2000). Common-value
auctions have called into question the causal relationship between market structure
and efficiency, driven by a number of interdependent effects which make the conse-
quences of mergers, collusion, and concentration generally, unclear. Legal antitrust
thinking has advocated a hands-off approach to regulating common value auctions
until these effects are better understood (Froeb and Shor 2005). Our results are in
line with the traditional thinking about the effects of concentration on prices. It may
very well be appropriate to extend the antitrust bias against greater concentration
to common-value auction markets, though much more exploration is required.

Our design addresses the issue of concentration, generally, abstracting from
several real issues of collusion and mergers. First, we assume that a merged con-
sortium’s representative has access to all of the members’ signals and ignore the
very real issues of designing incentive-compatible mechanisms for eliciting signals
and sharing revenue among colluders. Our framework is more akin to a takeover
scenario since the acquiring firm has an incentive to aggregate all available informa-
tion. Second, the partition of signals is exogenous. Issues of incentives to merge and
collude are therefore avoided. In this sense, the theoretical findings and experiment
answer the “what if” effect of concentration, rather than the “why.” Alternately,
they may reflect mergers among multi-product firms for whom these auctions rep-
resent minor portions of revenue, and hence the effects of merging in this auction
market are negligible relative to other concerns.

A first extension is to consider incentives to merge. Such analysis could have
a prescriptive purpose, aiding our understanding of merger “waves,” as firms not
yet part of a bidding ring may perceive their inferior information as a competitive
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disadvantage. A second extension may focus on multi-unit auctions in which the
informational effects must also be balanced against demand reduction.

Appendix

For the proofs of the lemmas, we require three technical results.

Proof of Claim 1 For independent signals with log-concavely density functions,
X1+···+Xk

k and max(X1, . . . , Xk) are affiliated. Hence,

E[Xk |Xk ≤ x]
≥ E[Xk |Xk ≤ x, max(X1, . . . , Xk) ≤ x]
= E[Xk | max(X1, . . . , Xk) ≤ x]
= E[X |X ≤ x].

��
Claim 2 If F and G are positive continuous functions such that [F(x)/G(x)] is
decreasing (increasing) in x , then

∫ x
0 F(s)ds

∫ x
0 G(s)ds

≥ F(x)

G(x)
,

and
∫ x

0 F(s)ds
∫ x

0 G(s)ds
is decreasing (increasing) in x .

Proof We will provide a proof only for the decreasing case. The statement for
increasing can be obtained analogously. By Lagrange’s theorem, there exists
ξ ∈ [0, x] such that

∫ x
0 F(s)ds

∫ x
0 G(s)ds

= F(ξ)

G(ξ)
≥ F(x)

G(x)
.

This property implies that
∫ x

0 F(s)ds
∫ x

0 G(s)ds
is decreasing in x , since there exists an

η ∈ [x, x + y]
∫ x

0 F(s)ds
∫ x

0 G(s)ds
≥ F(x)

G(x)
≥

∫ x+y
x F(s)ds

∫ x+y
x G(s)ds

= F(η)

G(η)
,

and hence
∫ x+y

0 F(s)ds
∫ x+y

0 G(s)ds
=

∫ x
0 F(s)ds + ∫ x+y

x F(s)ds
∫ x

0 G(s)ds + ∫ x+y
x G(s)ds

≤
∫ x

0 F(s)ds
∫ x

0 G(s)ds
. ��

Claim 3 Let fX be a log-concave density with support [0, 1]. Consider k ∈{2, 3, . . .}.
There exists a t > 0, such that

FXk
FX

is increasing on [0, t].
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Proof We will establish a slightly stronger result. By Claim 2, if
fXk
fX

is increasing

on some interval [0, t] then so is
FXk
FX

. We will identify a t > 0, such that,
fXk
fX

is
increasing on [0, t].

Log concave density implies that fX is unimodal. First, consider the case where
fX is everywhere decreasing. Since it is a convolution of log-concave densities,
fXk

is also log-concave. This implies that there exists t > 0, such that fXk
does

not change monotonicity on [0, t]. Since fXk
(0) = 0, fXk

is increasing on [0, t],
which means that

fXk
fX

is increasing on [0, t].
Next, consider the case where fX is increasing on [0, t ′] for some t ′ > 0.

For simplicity, we let k = 2, though other cases are obtained analogously. For
sufficiently small y > x ,

fX2
(x)

fX (x)
=

2x∫

0

fX (2x − s) fX (s)

fX (x)
ds = 2

2x∫

x

fX (2x − s) fX (s)

fX (x)
ds

due to the symmetry of the integrand around x . Because we ar elimiting ourselves
to the region where fX (x) is increasing, we have fX (y − x +s) ≥ fX (s), implying

≤ 2

2x∫

x

fX (2x − s) fX (y − x + s)

fX (x)
ds

The log-concavity assumption implies that fX (y)
fX (x)

≤ fX (y−(s−x))
fX (x−(s−x))

for x ≤ s ≤ 2x .
Thus,

≤ 2

2x∫

x

fX (y + x − s) fX (y − x + s)

fX (y)
ds

when y is sufficiently small (y < t ′/2). By changing the integration variable
s = r − (y − x),

= 2

y+x∫

y

fX (2y − r) fX (r)

fX (y)
dr ≤ 2

2y∫

y

fX (2y − r) fX (r)

fX (y)
dr

=
2y∫

0

fX (2y − r) fX (r)

fX (y)
dr = fX2

(y)

fX (y)
.

��
Proof of Lemma 1 (i) We proceed in two steps. First, we establish that if X1, . . . , Xl
are i.i.d. variates and if k ≤ l, then

E[max(X1, . . . , Xk)| max(X1, . . . , Xk) ≤ x]
≤ E[max(X1, . . . , Xl)| max(X1, . . . , Xl) ≤ x]
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for all x . Since max(X1, . . . , Xk) ∼ Fk and max(X1, . . . , Xl) ∼ Fl , Claim 2

implies that
∫ x

0 Fk (s)ds
∫ x

0 Fl (s)ds
is decreasing. Taking the derivative of the logarithm of this

expression yields:
∫ x

0 Fl(s)ds

Fl(x)
≤

∫ x
0 Fk(s)ds

Fk(x)
and x −

∫ x
0 Fk(s)ds

Fk(x)
≤ x −

∫ x
0 Fl(s)ds

Fl(x)

which establishes the first step. Next, we show that β
F P,X
n+1 (x)− β

F P,X
n (x) crosses

0 only once.

β
F P,X
n+1 (x) − βF P,X

n (x) = 1

n(n + 1)
E[X |X ≤ x]

+ 1

n + 1
E[max(X1, . . . , Xn)| max(X1, . . . , Xn) ≤ x]

−1

n
E[max(X1, . . . , Xn−1)| max(X1, . . . , Xn−1) ≤ x]

Denote by µX
k:n the expected value of the kth lowest order statistic out of a sam-

ple of n i.i.d. random variables distributed as X . Define the random variable
Z = X |X ≤ x .

β
F P,X
n+1 (x) − βF P,X

n (x) = 1

n(n + 1)
µZ

1:1 + 1

n + 1
µZ

n:n − 1

n
µZ

n−1:n−1

= 1

n

(
µZ

n:n − µZ
n−1:n−1

)
+ 1

n(n + 1)

(
µZ

1:1 − µZ
n:n

)

First, note that when n = 2, the above reduces to 1
3 (µZ

2:2 − µZ
1:1) > 0. Second,

the sequence µZ
n:n is increasing and tends tends to x . It is also well established that

µZ
n:n − µZ

n−1:n−1 is decreasing in n. These facts imply that the expression above is
decreasing, and negative for sufficiently large n.
(ii) Follows from Equation (2) and the fact that E[X |X ≤ x] ≤ x . ��
Proof of Lemma 2 (i) Define the random variable Y ≡ Xk and denote by F and
G the cumulative distribution functions of X and Y . By Claim 3, G

F is increasing
on [0, t̂] for some t̂ > 0. Following reasoning similar to Claim 2, we infer that∫ x

0 Gn−1(s)ds
∫ x

0 Fn−1(s)ds
is also increasing on [0, t̂]. This implies

E[max(Y1, . . . , Yn−1)| max(Y1, . . . , Yn−1) ≤ x]
≥ E[max(X1, . . . , Xn−1)| max(X1, . . . , Xn−1) ≤ x]

for all x in [0, t̂ ]. Claim 1 also guarantees that E[Y |Y ≤ x] ≥ E[X |X ≤ x] for all
x . This establishes the existence of tk,n,F ≥ t̂ with the desired property. To dem-
onstrate the existence of t ′k,n,F , we observe that the function max : [0, 1]n → R

is convex in every component. Since Y is smaller than X in the convex order, we
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have, for all n ≥ 2, E[max(Y1, . . . , Yn)] < E[max(X1, . . . , Xn)] (Shaked and
Shanthikumar 1994).

βF P,Y
n (1) = n − 1

n
E[Y ] + 1

n
E[max(Y1, . . . , Yn−1)]

<
n − 1

n
E[X ] + 1

n
E[max(X1, . . . , Xn−1)] = βF P,X

n (1)

establishing the existence of t ′k,n,F with the desired properties.
(ii) Follows directly from Claim 1. ��

The uniform distribution, as in our experiments, yields the special case, tk,n,F =
t ′k,n,F . If the distribution is symmetric, one can verify that tk,n,F ≥ E[X ].

We also prove an alternate version of Lemma 2 for the log-concave order.

Lemma 3 (Lemma 2 for the log-concave order) If E[X ] = E[Y ] and Y is more
precise than X in the log-concave order, Y �lc X, then

(i) there exist a tX,Y,n and t ′X,Y,n, 0 < tX,Y,n ≤ t ′X,Y,n < 1, such that β
F P,Y
n (x) ≥

β
F P,X
n (x) for x in [0, tX,Y,n] and β

F P,Y
n (x) ≤ β

F P,X
n (x) for x in [t ′X,Y,n, 1];

and
(ii) β

S P,Y
n (x) ≥ β

S P,X
n (x) for all x.

Proof The log-concave order implies that G
F is unimodal and following reasoning

similar to Claim 2, we infer that
∫ x

0 Gn−1(s)ds
∫ x

0 Fn−1(s)ds
is unimodal and is increasing on [0, t̂].

By Whitt (1985), Y �lc X implies that E[Y |Y ≤ x] ≥ E[X |X ≤ x] for all x .
Lastly, Yi �lc Xi implies that Y is smaller than X in the convex order. We can now
parallel the steps of Lemma 2 to establish the desired result.

Proof of Theorem 1 For part (i-a), Lemma 1 implies that βF P,Xk
m (x) ≥ β

F P,Xk
km (x)

for all x when m is sufficiently large, and Lemma 2 provides that β
F P,Xk
km (x) ≥

β
F P,X
km (x) for sufficiently small x . For (i-b), observe that the equilibrium bids are

β
F P,X
km (1) = km − 1

km
E[X ] + 1

km
E[max(X1, . . . , Xkm)], and

βF P,Xk
m (1) = m − 1

m
E[Xk] + 1

m
E[max(Xk, 1, . . . , Xk, m)].

By definition, E[X ] = E[Xk]. Note that for large m we have the following rela-
tionships

∣
∣E[max(Xk, 1, . . . , Xk, m)] − E[max(X1, . . . , Xkm)]∣∣ ≤ ε

for ε arbitrarily small since

lim
m→∞E[max(Xk, 1, . . . , Xk, m)] = lim

m→∞E[max(X1, . . . , Xkm)] = 1.

This means that we can find mk such that for m > mk

E[max(Xk, 1, . . . , Xk, m)] >
(k − 1)

k
E[X ] + 1

k
E[max(X1, . . . , Xkm)]
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since as before we have that

E[max(X1, . . . , Xkm)] > E[max(Xk, 1, . . . , Xk, m)] > E[X ].

But this also establishes that for m > mk

β
F P,X
km (1) = m − 1

m
E[X ] + 1

m

(
(k − 1)

k
E[X ] + 1

k
E[max(X1, . . . , Xkm)]

)

<
m − 1

m
E[X ] + 1

m
E[max(Xk, 1, . . . , Xk, m)]

= βF P,Xk
m (1).

For part (ii), we have β
S P,X
km (x) ≤ β

S P,X
m (x) ≤ β

S P,Xk
m (x) where the first inequal-

ity follows from Lemma 1 and the second from Lemma 2. ��
Theorem 1 allows for the possibility of a crossing between the two bidding

functions, at least for low values of m. In the proof of Theorem 2 we make use of
the following claim.

Claim 4 In the average value model, revenue from the symmetric equilibrium may
be expressed as

RF (n) = µF − (µF
n:n − µF

n−1:n−1).

Proof Since revenue equivalence applies to this model, we need to present a proof
only for second-price auctions. The symmetric equilibrium bid is

βS P,X
n (x) = 2

n
x + n − 2

n
E[X |X ≤ x] = x − n − 2

n

∫ x
0 F(s)ds

F(x)
.

The revenue, given distribution F , can be computed as

RF (n) =
∞∫

0

βS P,X
n (x) fn−1:n(x)dx .

We will make use of the following recurrence relationship between the expectations
for order statistics

nµF
n−1:n−1 = µF

n−1:n + (n − 1)µF
n:n.17

Also note that the density of the second highest order statistic out of a draw of n
i.i.d. variates is

fn−1:n(x) = n(n − 1) f (x)Fn−2(x)(1 − F(x)).

17 See, for example, Arnold et al. (1992).
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Using the above relationships we can establish using integration by parts

RF (n) = µF
n−1:n −

∞∫

0

(n − 1)(n − 2)

⎛

⎝

x∫

0

F(s)ds

⎞

⎠ f (x)Fn−3(x)(1 − F(x))dx

= µF
n−1:n −

∞∫

0

⎛

⎝

x∫

0

F(s)ds

⎞

⎠ fn−2:n−1(x)dx

= µF
n−1:n −

∞∫

0

F(x) (1 − Fn−2:n−1(x)) dx

= µF
n−1:n −

∞∫

0

F(x) − (n − 1)Fn−1 + (n − 2)Fndx

= µF
n−1:n + µF − (n − 1)µF

n−1:n−1 + (n − 2)µF
n:n

= µF − (µF
n:n − µF

n−1:n−1). ��
Proof of Theorem 2 We compare the case where n = 2m bidders each receive 1
signal with the case where m bidders each receive 2 signals. Similar arguments
establish the result for other k ≥ 2. Let G be the distribution of the average of two
private signals. According to Claim 4, revenues in these two cases are given by

RG(m) = µG − (µG
m:m − µG

m−1:m−1)

=
∞∫

0

(
1 − G(s) − (1 − Gm(s)) + 1 − Gm−1(s)

)
ds

=
∞∫

0

(1 − G(s))(1 − Gm−1(s))ds

RF (2m) =
∞∫

0

(
1 − F(s))(1 − F2m−1(s)

)
ds.

Note also that by standard stochastic variability order arguments,18 we can establish
that

x∫

0

(1 − F(s))ds ≥
x∫

0

(1 − G(s))ds (4)

for every x . Since, by definition, we have that µF = µG , we can conclude that

RF (2m) ≥ RG(m) ⇔
∞∫

0

F2m−1(s)(1 − F(s))ds ≤
∞∫

0

Gm−1(s)(1 − G(s))ds.

18 See for example Shaked and Shanthikumar (1994).
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We will establish the latter inequality in two steps

∞∫

0

F2m−1(s)(1 − F(s))ds ≤
∞∫

0

F2m−1(s)(1 − G(s))ds

and ∞∫

0

F2m−1(s)(1 − G(s))ds ≤
∞∫

0

Gm−1(s)(1 − G(s))ds.

The last step is apparent once we observe that max(X1, X2) ≥ X1+X2
2 , and since

max(X1, X2) ∼ F2 and X1+X2
2 ∼ G we have by stochastic dominance that F2 ≤

G and hence
F2m−1 ≤ Gm−1

which gives us the desired second inequality.
For the first step, we can treat 1− F and 1−G (if necessarily normalized by µF

and µG) as probability densities. The inequality in (4) establishes the stochastic
dominance relationship between these two densities. Since F2m−1 is increasing,
we obtain the desired inequality in step 1. ��
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