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Abstract We consider how information concentration affects a seller’s revenue in
common value auctions. The common value is a function of n random variables parti-
tioned among m ≤ n bidders. For each partition, the seller devises an optimal mecha-
nism. We show that whenever the value function allows scalar sufficient statistics for
each player’s signals, the mechanism design problem is well-defined. Additionally,
whenever a common regularity condition is satisfied, a coarser partition always reduces
revenues. In particular, any merger or collusion among bidders reduces revenue.
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1 Introduction

Consider a seller of an indivisible item facing several potential buyers, each with
some information about the object’s common value. How would a decision by a group
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184 V. Mares, M. Shor

of buyers to centralize their information and decision-making authority impact the
seller’s revenue? While the question is of obvious interest to auctioneers considering
allowing bidding syndicates and to policy governing mergers and collusion, these
environments remain largely unmodeled. Providing a general result on the revenue
impact of information concentration is the purpose of this manuscript.

A growing literature is devoted to determining how access to more informative
signals changes behavior in allocation problems (Matthews 1984; Persico 2000; Athey
and Levin 2001; Bergemann and Valimaki 2002; Mares and Harstad 2003). Since these
approaches generally define “more informative” in terms of some order over scalar
random variables, they permit two buyers working together to possess anything from
only a slightly more informative signal than each of them had individually to nearly
perfect information about the object’s value. Another strand of literature finds that a
more concentrated industry, obtained by removing a bidder and his information, is less
profitable even when the auctioneer reacts with an optimal mechanism (Bulow and
Klemperer 1996). However, this approach conflates the role of industry concentration
with information concentration.

In contrast, our approach keeps the total amount of information constant while con-
centrating its allocation among fewer bidders. The centralization of two buyers’ signals
would simply have the joint entity with two signals. Since the new entity possesses
a multidimensional signal, this calls into question the existence of equilibria in auc-
tions (Jackson 2009) and of incentive-compatible mechanisms in general (Armstrong
and Rochet 1999). Several authors have adopted models of bidding with multidimen-
sional signals while imposing symmetry (Goeree and Offerman 2002; DeBrock and
Smith 1983; Mares and Shor 2008). Yet, symmetric models are particularly ill-suited
to modeling mergers or collusion as even an a priori symmetric industry will not be
so following a merger. 1 Without symmetry, simple auction mechanisms need not be
optimal. In this paper, we provide the auctioneer full strategic latitude in the choice
of mechanisms. In private value auctions, Waehrer and Perry (2003) find that merger
effects can be partially offset by strategically altering the reserve price.

In our model, the object’s value is a function of n independent (but not necessarily
identically distributed) signals, which are allocated among m ≤ n bidders. We adopt
a mechanism design approach, allowing the seller to select an optimal mechanism
for each allocation of signals among bidders. We require that each bidder’s vector
of signals allows a scalar sufficient statistic, a condition satisfied by commonly ana-
lyzed models including additively separable and maximum or minimum value auctions
(Mares and Shor 2008; Bikhchandani and Riley 1991; Bulow and Klemperer 2002;
Krishna and Morgan 1997). Our central result is that a coarser partition of informa-
tion among bidders always results in reduced revenue for the seller. This implies that
all mergers reduce the auctioneer’s revenue, even those that make an industry more
symmetric by aggregating smaller bidders.

1 Common value auctions appear especially sensitive to asymmetries. Bikhchandani and Riley (1991)
notes that even vanishing asymmetries can lead an advantaged bidder to win the auction with probability 1.
Klemperer (1998) provides discussion of this result in relation to the FCC spectrum auctions. Symmetric
models can significantly overstate price changes following a merger of smaller firms in asymmetric industries
(Dalkir et al. 2000; Tschantz et al. 2000).
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To approach the mechanism design problem in asymmetric, multidimensional sig-
nals contexts, we provide a result that significantly simplifies the problem. Whenever
a scalar sufficient summary statistic exists for each player’s signals, every incentive-
compatible mechanism has a revenue-equivalent incentive-compatible scalar mech-
anism that requires only scalar reports. We offer a constructive proof of this result
in a general environment. This allows a broad class of problems to be analyzed in
the Myerson (1981) framework and provides sufficient conditions for the existence of
incentive-compatible mechanisms.

For example, Biais et al. (2000) and Goeree and Offerman (2002) consider specific
value functions for which two signals can be summarized with a scalar sufficient
statistic. DeBrock and Smith (1983) employ conditional log-normal distributions of
signals and use the geometric mean as a sufficient statistic of value. While the existence
of scalar sufficient statistics is not a general property, it is reasonably broad to produce
an interesting class of analytical examples. To illustrate, consider quasi-arithmetic
means,

M f (x) = f −1
(∑

f (xi )

n

)
,

for some increasing f and define the value function, V (x) = g
(
M f (x)

)
, as a func-

tion of signals x for some increasing g. When f (x) = xα , we obtain the class of

power means Mxα (x) = (∑ 1
n xαi

)1/α
which encompasses the additive model and the

interesting limit cases limα→∞ Mxα (x) = max(x), limα→0 Mxα (x) = ∏
x1/n

i , and
limα→−∞ Mxα (x) = min(x). The minimum and maximum value functions have been
studied by Mares and Harstad (2003) while mergers in the context of a symmetric
additive model have been analyzed by Krishna and Morgan (1997) and Mares and
Shor (2008). It is obvious that M f (s) is a scalar sufficient statistic for any s, even for
nonsymmetric value functions.

It is also worth mentioning that while the existence of scalar sufficient statistics
is broadly a sufficient condition for the existence of equilibria in certain auctions,
it is by no means a necessary condition. However, generically, one can construct
examples where the absence of scalar representations induces non-monotonicity of or
even absence of equilibria (Jackson 2009; Reny and Zamir 2004).

In what follows, we describe a model of common value environments that allows
for arbitrary partitions of signals among bidders. We first present our result on the exis-
tence of optimal scalar mechanisms. This allows us to extend the definition of virtual
valuations to these contexts. Then, we present our main result that coarser partitions of
information in regular allocation problems decreases revenue. We demonstrate these
results for a class of value functions and conclude with policy implications and sug-
gestions for future research.

2 Model

A seller has one indivisible object. Consider a collection of n independent random
variables, (X1, . . . , Xn), where Xi has density fi , distribution Fi , survival function
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F̄i , and typical element xi ∈ [zi , zi ] ⊂ �. These random variables need not be
identically distributed, but we do require independence. Without independence, the
results of Crémer and McLean (1988) and McAfee and Reny (1992) would imply full
revenue extraction, trivially eliminating any impacts information concentration may
have on revenue as long as two buyers remain.

An information profile A = {A1, . . . , Am} is a partition of the index set {1, . . . , n},
with the interpretation that the n signals are distributed among m ≤ n risk-neutral
buyers. Si ≡ {Xk}k∈Ai describes bidder i’s private information with typical element
si ∈ �i ≡ ∏

k∈Ai
[zk, zk] ⊂ �|Ai |. A vector of realizations of private information is

denoted s = (si , s−i ) = (s1, . . . , sm).
Bidder i’s valuation for the object is given by Vi (s) which is increasing in si and

non-decreasing in s−i . This model generalizes the standard symmetric auction model.
The special case of each bidder possessing one identically distributed signal is obtained
when m = n, Ai = {i}, and Fi ≡ F .

The seller constructs a mechanism, η = (pi (s), ξi (s)), which determines alloca-
tion probabilities and payments based on buyers’ reports of s. Define an information
profile A′ as coarser than information profile A if, for each A ∈ A, there exists
an A′ ∈ A′ such that A ⊆ A′. For example, consider a merger between bidders
1 and 2, so that the merged entity shares all information and places a single bid.
By redistributing all of bidder 2’s information toward 1, the post-merger informa-
tion profile, A′ = {A1 ∪ A2, A3, . . . , Am}, is coarser than the pre-merger profile,
A = {A1, A2, A3, . . . , Am}.

3 Scalar mechanisms

We will show that when each player’s type is multidimensional but admits a sufficient
statistic, the search for optimal mechanisms is simplified. Scalar mechanisms, which
require only the report of the sufficient statistic instead of the full vector describing the
private information, are natural candidates in such settings. Their reliance on scalar
private reports for the allocation, and payment problem reduces the dimensionality
of the message space under consideration. We will show that they can replicate the
revenue properties of their more complex counterparts.

Assume that, for information profile A = {A1, . . . , Am} and for player i , the value
functions admit sufficient statistic representations. Formally, there exists a function
φAi : �i → � which satisfies, for all j and any s−i ,

Vj (si , s−i ) ≥ Vj (s′
i , s−i ) ⇔ φAi (si ) ≥ φAi (s′

i ).

We define two types si and s′
i as equivalent if φAi (si ) = φAi (s′

i ).
For every mechanism, η = (pi (si , s−i ), ξi (si , s−i )) we can construct a scalar

mechanism η′ = (p′
i (si , s−i ), ξ

′
i (si , s−i )) where

p′
j (φ

Ai (si ), s−i ) =
∫

p j (ti , s−i ) fi

(
ti |φAi (ti ) = φAi (si )

)
dti , and (1)

ξ ′
j (φ

Ai (si ), s−i ) =
∫
ξ j (ti , s−i ) fi

(
ti |φAi (ti ) = φAi (si )

)
dti . (2)
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for every j and si . The scalar mechanism, η′, averages the allocation probabilities
and payment functions over the set of equivalent types. Two equivalent types si and
s′

i will receive the asset with the same probability p′
i (φ

Ai (si ), s−i ) and face the same
payment ξ ′

i (φ
Ai (si ), s−i ). Furthermore, from player j’s perspective, the allocation

probability and payment are invariant across equivalent types of player i . In essence,
the mechanism η′ requires only a report of the sufficient statistic of player i’s private
information.

We show that mechanisms η and η′ are revenue equivalent. Additionally, if η is
incentive compatible, then so is η′, so any mechanism has an associated revenue-
equivalent scalar mechanism.

Theorem 1 For any set of value functions which admit scalar sufficient statistics for
player i , and any incentive-compatible mechanism η, we can construct an incentive-
compatible scalar mechanism, η′, which has the same expected revenue as η but which
has probability and payment functions which depend only on the sufficient statistic
φAi of the private information of player i.

The theorem addresses a single bidder whose information can be summarized via a
sufficient statistic. Its extension to instances where multiple or even all players’ private
information can be captured by scalars is straightforward, applying the theorem to each
player in turn. Scalar mechanisms are easier to implement than mechanisms requiring
multiple reports from each bidder, especially when different bidders are asked for
different quantities of reports.

The theorem guarantees that a scalar mechanism exists in the set of all optimal
mechanisms for this problem. This allows the search for optimal mechanisms to con-
sider only scalar mechanisms. The next section exploits this property by establishing,
for a certain class of value functions, a strong order among revenues generated by
different information partitions.

4 Information concentration

We now investigate the impact of information concentration on the seller’s revenues.
We will treat information concentration as a redistribution of the available information
among bidders. Intuitively, one can think of a process of coalition formation whereby
bidders “ buy out” their competitors, gaining access to their private information. Each
such merger among bidders transforms the information profile, A, into a coarser infor-
mation profile, A′.

For the remainder of the manuscript, we concentrate on pure common value auc-
tions, Vi (·) ≡ V (·), where the value of the object is the same for each bidder under
every information profile. This implies that mergers do not have value-improving
synergies and allows us to focus on the role of information concentration. This also
allows us to sidestep inherent problems of ad hoc value formulations in post-merger
scenarios. We place the following assumptions on V :

Assumption 1 V is twice differentiable, increasing, and weakly supermodular: ∂i V >

0 and ∂i j V ≥ 0 for all i, j .
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Assumption 2 V admits sufficient statistic representations for all players and infor-
mation profiles A = {A1, . . . , Am} such that φAi is differentiable in all its arguments,
for all i .2

Since sufficient statistics are uniquely defined only up to a monotone transformation,
we arbitrarily select one set of representations. It will be convenient to refer to value
functions parametrized over the space of sufficient statistics, rather than the elementary
signals. Define implicitly V Ai : �1+∑

j �=i |A j | → �

V Ai (ti , s−i ) = V (si , s−i )

whenever φAi (si ) = ti . This is the value function when bidder i’s (possibly multidi-
mensional) information is replaced with its scalar sufficient statistic. Similarly, define
for every information profile A = {A1, . . . , Am}, the function V A : �|A| → �

V A(t1, . . . , tm) = V (s1, . . . , sm)

if, for all i ∈ {1, . . . ,m}, φAi (si ) = ti . It is straightforward to show that if the functions
φAi are differentiable, the functions V A inherit several properties of the function V .
In particular, V A is increasing and weakly supermodular, ∂i V A > 0 and ∂i j V A ≥ 0.

Let
{

X j
}

j∈Ai
be the independent random variables describing the information held

by bidder i with signals j ∈ Ai . Consider the transformations φAi : �i → �. We will
denote by FφAi , fφAi , and FφAi the distribution, density, and survival function of the

random variable φAi

({
X j

}
j∈Ai

)
.

An allocation problem in this context is a collection
(

n, V,
{

Xi
}n

i=1 , {Fi }n
i=1 ,A,{

φAi
}

Ai ∈A

)
, where {Fi }n

i=1 represent the cumulatives of the n independent random

variables {Xi }n
i=1 ,A is an information profile, and

{
φAi

}
Ai ∈A represent the sufficient

scalar statistics. For any allocation problem, define the functions

gA
i (ti , t−i ) = FφAi (ti )

fφAi (ti )
∂i V A(ti , t−i ). (3)

We require the following regularity condition for our main result.

Definition An allocation problem is regular if, for any information profile A =
{A1, . . . , Am}, the virtual valuation functions

HA
i (ti , t−i ) = V A(ti , t−i )− gA

i (ti , t−i ) (4)

are non-decreasing in ti for all i .

2 The differentiability assumption is very mild. By Assumption 1, the functions φAi are monotone and
thus almost everywhere differentiable.
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Observe that by Assumption 1, gA
i is non-decreasing in t j , for all i and j �= i, and

that a sufficient condition for regularity is that gA
i are non-increasing in ti . Our regu-

larity condition requiring that virtual valuations are non-decreasing is a generalization
of the condition in Myerson (1981) developed by Bulow and Klemperer (1996). We
now state our main result.

Theorem 2 For all regular allocation problems, coarser profiles lead to lower rev-
enues.

For a sketch of the proof, consider a simple merger where bidder 1 and 2’s infor-
mation is centralized under the control of a new bidder c. Let

A = {A1, A2, . . . , An}

be the pre-merger information profile and

A′ = {Ac, A3, . . . , An}

represent post-merger, where Ac = A1 ∪ A2.
We show that an incentive-compatible mechanism exists in the pre-merger case

that is revenue-equivalent to the optimal mechanism post-merger. Effectively, it treats
bidders 1 and 2 as if they had merged, even though they do not share information. In the
optimal scalar mechanism under A′, each bidder i ≥ 3 submits a scalar report, ti , and
bidder c submits a scalar report tc. The proof follows three steps. First, we characterize
the optimal post-merger mechanismμA′

. Second, we construct a mechanismμA for the
information profile A, which treats bidders 3 through n identically asμA′

but allocates
to bidder 2 whenever bidder c would have won under μA. Finally, we show that μA is
incentive compatible and revenue-equivalent to μA′

. Since μA is revenue-dominated
by the optimal mechanism for information profile A, we establish the desired result.

The central argument behind our revenue comparison in Theorem 2 is quite gen-
eral. Starting from an optimal mechanism under a concentrated profile, we construct
an allocation-equivalent mechanism for a profile where one of the bidding rings is
dissolved into its component members. The new mechanism allocates to one repre-
sentative member, whenever the old mechanism allocated toward the ring, and does
not otherwise modify allocations. This generates the same surplus as the old mech-
anism, but is not necessarily optimal in the new environment. Our argument relies
crucially on the independence assumption since this guarantees that the new mech-
anism satisfies both the individual rationality and incentive compatibility constraints
for the representative of the ring.

The requirement that a scalar sufficient statistic exists is also a critical assumption.
Our argument assumes the existence of an optimal mechanism under the concentrated
profile. While there is no guarantee that such an optimal mechanism exists generically,
the scalarization assumption and regularity condition are sufficient for a constructive
proof using the approach of Myerson (1981) and Bulow and Klemperer (1996).3

3 Note also that, we represent the transition from concentrated to non-concentrated environments at a
very abstract level. Any bidding ring can be dissolved into its component members. This has the flavor of
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190 V. Mares, M. Shor

While we define a regular allocation problem as requiring that the virtual valuation
functions, HA

i , are non-decreasing for every information profile, it is possible that
monotonicity is satisfied only for some information profiles A and A′. In this case, we
still conclude that if A′ is coarser than A, it will be associated with lower revenues.
Additionally, if the optimal mechanism under information profile A requires each
buyer to have a strictly positive allocation probability, then a coarser profile leads to
strictly lower profits. This assures thatμA derived fromμA′

is not optimal, as no buyer
is irrelevant.

5 Discussion

Information concentration decreases revenue, even when the auctioneer can respond
optimally to the new industry structure. This is similar in spirit to the result of Waehrer
and Perry (2003) who find revenues decrease in symmetric private value environments
even allowing optimal mechanism adjustments that account for less competitive pro-
files. In common value environments, our result complements that of Bulow and Klem-
perer (1996), though with one important distinction. Bulow and Klemperer compare
an optimal mechanism under a less competitive scenario to a standard auction with
more bidders. A no-reserve English auction with N + 1 bidders revenue dominates
any mechanism with N bidders, when signals are independent. This result has been
commonly interpreted as stating that the competition effect outweighs any mechanism
design variable the auctioneer could introduce. However, N bidders are also collec-
tively less informed than N + 1 bidders, diluting the argument of the strength of the
competitive effect. Our results show that, keeping the informational content constant,
we can isolate a competitive effect which reduces the seller’s revenues even if we
allow the seller full latitude in the choice of mechanisms.

Recently, Mares and Shor (2008) identified a revenue effect of concentration in
wallet games, where the value is equal to the sum of the signals, and signals have log-
concave density. They consider only symmetric industry profiles and first and second
price auctions. For example, six firms each with one independent signal yield higher
revenue for the auctioneer than three firms each with two signals. With symmetry,
revenue equivalence allows the mechanism design issue to be sidestepped. We can
apply our theorem to generalize the result to all information profiles. Consider the
following value function:

V (X1, . . . , Xn, ) =
∑

Xk

where each Xi has log-concave density fi and distribution Fi . Clearly, the value
function is increasing in all of its arguments and is (weakly) supermodular. Further,
φAi (Xi ) = ∑

k∈Ai
Xk is a sufficient statistic for Xi . Thus, we can write the value

Footnote 3 continued
ex-post implementation in its incentive compatibility requirement for the representative of the ring. In mul-
tidimensional problems, Bikhchandani (2006) shows that a single-crossing condition akin to scalarization
is required for the existence of ex-post implementation.
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function over summary statistics, V A (ti , t−i ) = ti +∑
j �=i t j . To check our regularity

condition, recall that

gA
i (ti , t−i ) = FφAi (ti )

fφAi (ti )
∂i V A (ti , t−i ) .

Consider X and Y independent variables with log-concave densities fX and fY , which
is satisfied by most common distributions (Bagnoli and Bergstrom 2005). This implies
that Z = X + Y has a log-concave distribution and survival function (Prékopa 1971,

1973). In particular, F Z (ti )
fZ (ti )

is non-increasing. Since ∂i V A (ti , t−i ) = 1, our regularity
condition is satisfied. Therefore, in the wallet game, coarser information profiles lead
to lower revenues when signals have log-concave distributions.

Multidimensional signals significantly complicate the analysis of equilibria and
call their existence into question (Jackson 2009). To sidestep these complications,
researchers have focused on a few specific models for which equilibria have been
analytically identified (e.g., Goeree and Offerman 2002; DeBrock and Smith 1983;
Mares and Shor 2008). Our results suggest that researchers need not be restricted
to these specialized models. Any model that allows for scalar sufficient statistics of
each bidder’s information can be analyzed in the familiar framework of mechanism
design with a scalar message space.4 While the existence of scalar sufficient statistics
is in itself a restrictive assumption, it allows us to examine the impact of information
concentration in a more general fashion.

Our results apply to environments in which signals are independent. When signals
are affiliated, optimal mechanisms exist that can extract full surplus (Crémer and
McLean 1988; McAfee and Reny 1992), thus implying that mergers have no effect
on revenue provided at least two bidders remain. These mechanisms have often been
criticized as unrealistically sophisticated, though this need not be the case as the
following example shows.

Consider four independent random variables Yi and define V = ∑4
i=1 Yi . Let the

private information of each of four bidders be a signal Xi = Yi + Yi+1 for i ≤ 3
and X4 = Y4 + Y1. In the unmerged case, each bidder receives a scalar signal. Now
consider the information profile A1 = {1, 3} and A2 = {2, 4} which yields two
perfectly informed bidders and a situation in which every standard auction is full
surplus extracting. It is straightforward to see that scalar sufficient statistics exist for
these merged entities and that V = 1

2

∑4
i=1 Xi , which satisfies our basic assumptions

about the value function. Yet, without independence, revenues do not decrease as a
result of this concentration. This simple construction exemplifies the need for the
independence assumption. Thus, mergers are unlikely to enhance revenue when the
auctioneer uses an optimal mechanism: trivially with affiliated signals and strictly with
independent signals.

4 The existence of an optimal scalar mechanism implies that a bidder does not receive information rents
for equivalent types—types that share the same value of a sufficient statistic. If this were not the case, then
the auctioneer, through sophisticated incentive constraints, would pay a bidder for revealing a specific type
among equivalent types (Armstrong and Rochet 1999).
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Our results have significant applications for antitrust. In traditional price-setting
markets, mergers among smaller, higher-priced firms can reduce average prices by
shifting quantity to lower-priced firms post-merger (Werden and Froeb 1994). Simi-
larly, in private value auctions, the auctioneer prefers to face symmetric bidders, hold-
ing the average value distribution constant (Cantillon 2008). Even profitable mergers
of relatively weak competitors can lead to higher revenues for the auctioneer.5 This
benefit of concentration among smaller market players has been suggested as an effi-
ciency defense in mergers (Dagen and Richards 2006), and several regulators have
appeared sensitive to these claims.

Some have conjectured that revenue-increasing mergers are possible in common
value auctions as well (e.g., Krishna and Morgan 1997), and specific examples have
illustrated pro-competitive merger effects when signals are affiliated, but the auctioneer
does not use an optimal mechanism or alter the mechanism across information profiles
(DeBrock and Smith 1983; Mares and Shor 2012). Based on these results, some have
called for regulatory restraint, advising regulators to err on the side of less oversight
when considering common value environments (Froeb and Shor 2005).6 Klemperer
(2005) argues that a positive view of mergers and joint bidding is largely rooted in a
misinterpretation of past research and suggests, in line with our results, that it is likely
to be harmful for the seller.

Should an auctioneer facing several bidders ever allow a consortium to form or
bidders to merge? Perhaps synergies not considered here can have a significant enough
positive impact, but the concentration of information, alone, cannot be of benefit to
the auctioneer when we allow him to respond optimally via his choice of auction
design. Our results describe conditions under which we can identify this unambiguous
revenue-reducing impact of information concentration.

Appendix

Proof of Theorem 1

The proof requires three lemmas. Fix the player for whom the value functions admit
sufficient statistics to be player 1.

Lemma 1 Under any incentive compatible mechanism, η, the expected surplus of
equivalent types is equal.

Proof For every mechanism η = (pi (·), ξi (·)) define

Ṽ j (s j ; t j ) =
∫

Vj (s j , s− j )p j (t j , s− j ) f− j (s− j )ds− j

5 Thomas (2004) demonstrates how “a profitable efficiency increasing merger of two relatively small firms
creates a stronger competitor that can cause the expected price to fall [in procurement settings], despite the
resulting increase in market concentration”. (p. 688).
6 For example, see the comments of Andrew R. Dick, former Acting Chief of the policy section at the
DOJ Antitrust Division, J. Mark Gidley, Assistant Attorney General for Antitrust, and David T. Scheffman,
former Director of the FTC’s Bureau of Competition, who all suggest that asymmetry-reducing mergers
can provide market efficiencies (FTC/DOJ 2004).
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and

ξ̃ j (t j ) =
∫
ξ j (t j , s− j ) f− j (s− j )ds− j

Under mechanism η, the expected payoff for player j who has information s j and
reports t j is

Ṽ j (s j ; t j )− ξ̃ j (t j ).

The interim incentive compatibility constraint for player 1 is

Ṽ1(s1; s1)− ξ̃1(s1) ≥ Ṽ1(s1; t1)− ξ̃1(t1) (5)

for all s1 and t1. For two equivalent types s1 and s′
1 and any t1, we have by definition

Ṽ1(s1; t1) = Ṽ1(s′
1; t1)

and in particular

Ṽ1(s1; s1) = Ṽ1(s′
1; s1), (6)

Ṽ1(s′
1; s′

1) = Ṽ1(s1; s′
1). (7)

Combining expressions, we have

Ṽ1(s1; s1)− Ṽ1(s′
1; s′

1) = Ṽ1(s1; s1)− Ṽ1(s1; s′
1) ≥ ξ̃1(s1)− ξ̃1(s′

1) (8)

where the equality holds by (7) and the inequality by (5), substituting s′
1 for t1. Also,

by substituting s1 for t1 and s′
1 for s1 in (5), we have

ξ̃1(s1)− ξ̃1(s′
1) ≥ Ṽ1(s′

1; s1)− Ṽ1(s′
1; s′

1) = Ṽ1(s1; s1)− Ṽ1(s′
1; s′

1), (9)

where the equality follows from (6). Combining (8) and (9), we obtain

Ṽ1(s1; s1)− Ṽ1(s′
1; s′

1) = ξ̃1(s1)− ξ̃1(s′
1)

��
Consider the mechanism η′ as defined by Eqs. (1) and (2).

Lemma 2 If mechanism η is incentive compatible, then η′ is an incentive compatible
mechanism.

Proof Define fφA1 as the density ofφA1(S1).Also, for every s1, such thatφA1(s1) = α,
denote by

V A1
i (α; s−1) = Vi (s1, s−1)
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the parametrization of i’s value function based on the sufficient statistic’s value. Since
η is a mechanism, we have pi (s1, s−1) ≥ 0 and

∑
pi (s1, s−1) ≤ 1 for every i and

every (s1, s−1). This implies by integration over the set of equivalent types that for i
and s1,

∫
pi (t1, s−1) f1(t1|φA1(t1) = φA1(s1))dt1 ≥ 0 ⇔ p′

i (φ
A1(s1), s−1) ≥ 0

and similarly

∑
p′

i (φ
A1(s1), s−1) ≤ 1.

The interim incentive compatibility condition for player j under mechanism η is

Ṽ j (s j ; s j )− ξ̃ j (s j ) ≥ Ṽ j (s j ; t j )− ξ̃ j (t j )

for all s j and t j . For bidder j �= 1,

ξ̃ j (t j )=
∫
ξ j (t j , s1, s−1 j ) f1(s1) f−1 j (s−1 j )ds− j

=
∫

f−1 j (s−1 j )

∫
fφA1 (α)

∫
ξ j (t j , s1, s−1 j ) f1(s1|φA1(s1)=α)ds1dαds−1 j

=
∫ ∫

ξ ′
j (α, t j , s−1 j ) f−1 j (s−1 j ) fφA1 (α)ds−1 j dα

= ξ̃ ′
j (t j ).

Similarly, for all s j and t j ,

Ṽ j (s j ; t j ) =
∫

Vj (s j , s1, s−1 j )p j (t j , s1, s−1 j ) f1(s1) f−1 j (s−1 j )ds− j

=
∫ ∫

V A1
j (α; s j , s−1 j )p

′
j (α, t j , s−1 j ) f−1 j (s−1 j ) fφA1 (α)ds−1 j dα

= Ṽ ′
j (s j ; t j ).

Substituting the identical terms into the incentive compatibility constraint we get

Ṽ ′
j (s j ; s j )− ξ̃ ′

j (s j ) ≥ Ṽ ′
j (s j ; t j )− ξ̃ ′

j (t j )

for all s j and t j which indicates that mechanism η′ is incentive compatible for player
j .

Finally, we need to show that player 1’s incentive compatibility constraint is satisfied
under mechanism η′. Define

Ṽ ′
1(φ

A1(s1);φA1(t1)) =
∫

Ṽ1(s1; y1) f1(y1|φA1(y1) = φA1(t1))dy1.

123



Common value environments 195

and

ξ̃ ′
1(φ

A1(t1)) =
∫
ξ̃1(y1) f1(y1|φA1(y1) = φA1(t1))dy1

which are player 1’s expected asset value and expected payment when his type is
equivalent to s1 and he reports a type equivalent to t1.

The previous lemma establishes that for equivalent types s1 and s′
1,

Ṽ1(s1; s1)− ξ̃1(s1) = Ṽ1(s′
1; s′

1)− ξ̃1(s′
1).

and therefore, by the definition of equivalent types,

Ṽ1(s1; s1)− ξ̃1(s1) = Ṽ1(s1; s′
1)− ξ̃1(s′

1).

Integrating these relationships along the set of equivalent types with respect to
f1(s′

1|φA1(s′
1) = φA1(s1)) results in

Ṽ1(s1; s1)− ξ̃1(s1) = Ṽ ′
1(φ

A1(s1);φA1(s1))− ξ̃ ′
1(φ

A1(s1)). (10)

Player 1’s incentive compatibility constraint under η for nonequivalent types s1 and
t1 is

Ṽ1(s1; s1)− ξ̃1(s1) ≥ Ṽ1(s1; t1)− ξ̃1(t1).

Integrating these relationships along the set of equivalent types to t1 yields

Ṽ1(s1; s1)− ξ̃1(s1) ≥ Ṽ ′
1(φ

A1(s1);φA1(t1))− ξ̃ ′
1(φ

A1(t1)). (11)

Combining (10) and (11) yields

Ṽ ′
1(φ

A1(s1);φA1(s1))− ξ̃ ′
1(φ

A1(s1)) ≥ Ṽ ′
1(φ

A1(s1);φA1(t1))− ξ̃ ′
1(φ

A1(t1)).

which is the incentive compatibility constraint for player 1 under mechanism η′. ��
Lemma 3 The mechanisms η and η′ are revenue-equivalent.

Proof The expected revenue for the seller under mechanism η is

E R(η) =
∫ ∑

k

ξk(s) f (s)ds

=
∑

k

∫
ξk(s)

∏
fi (si )dsi

=
∑

k

∫
f−1(s−1)

∫
fφA1 (α)

∫
ξk(s1, s−1) f1(s1|φA1(s1) = α)ds1dαds−1.
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=
∑

k

∫ ∫
ξ ′

k(α, s−i ) f−1(s−1) fφA1 (α)dαds−1

= E R(η′)

��
Proof of Theorem 1 Follows from the above three lemmas. ��

Proof of Theorem 2

Notation

For notational convenience, we consider the case where buyer 1 and 2’s information
is centralized under the control of a new buyer c. Let

A = {A1, A2, A3, . . . , Am}

and

A′ = {
Ac, A′

3, . . . , A′
m

}

where Ac = A1 ∪ A2 and Ai = A′
i for all i ≥ 3. All the other cases can be derived

from this analysis. For simplicity, we drop the superscript in φAc (X1, X2) and denote
the sufficient statistic by φ(X1, X2).

For every t in the support of φ(X1, X2) define:

x1(t) = inf
{

x1| ∃x2 ∈ [z2, z2], φ(x1, x2) = t
}

(12)

and

x1(t) = sup
{

x1| ∃x2 ∈ [z2, z2], φ(x1, x2) = t
}
, (13)

analogously define x2(t) and x2(t). Note that these objects are well-defined and
increasing when φ(·, ·) is increasing.

Define implicitly for every t, ψ2(·, t) : [x1(t), x1(t)] → [x2(t), x2(t)]
φ(x1, ψ2(x1, t)) = t

and ψ1(·, t) : [x2(t), x2(t)] → [x1(t), x1(t)]
φ(ψ1(x2, t), x2) = t.

Note that ψ1(·, t) and ψ2(·, t) are well-defined decreasing functions and ψ−1
1 (·, t) =

ψ2(·, t). Further, when φ is differentiable then so are ψ and ψ2, and

d

dx1
φ(x1, ψ2(x1, t)) = 0 ⇔ ∂1φ(x1, ψ2(x1, t)) = −∂2φ(x1, ψ2(x1, t))∂x1ψ2(x1, t)
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or

∂x1ψ2(x1, t) = −∂1φ(x1, ψ2(x1, t))

∂2φ(x1, ψ2(x1, t))

and analogously

∂x2ψ1(x2, t) = −∂2φ(ψ1(x2, t), x2)

∂1φ(ψ1(x2, t), x2)
.

Note that if φ(x1, x2) = t

V A′
(t, t−12) = V A(x1, ψ2(x1, t), t−12) (14)

and therefore

∂t V
A′
(t, t−12) = ∂2V A(x1, ψ2(x1, t), t−12)∂tψ2(x1, t)

= ∂2V A(x1, ψ2(x1, t), t−12)

∂2φ (x1, ψ2(x1, t))
. (15)

By a similar argument one can show that

∂t V
A′
(t, t−12) = ∂1V A(ψ1(x2, t), x2, t−12)

∂1φ (ψ1(x2, t), x2)
.

and for all j ≥ 3

∂t j V A′
(t, t−1) = ∂1 j V A(ψ1(x2, t), x2, t−12)

∂1φ (ψ1(x2, t), x2)
,

which means that ∂t j V A′
and ∂1 j V A will have the same sign.

Lemma 4 The survival function and density function of φ(X1, X2) are given by

Fφ(t) =
∞∫

−∞
f1(x)F2(ψ2(x, t))dx =

∞∫
−∞

f2(x)F1(ψ1(x, t))dx, and (16)

fφ(t) =
∞∫

−∞

f1(x) f2(ψ2(x, t))

∂2φ(x, ψ2(x, t))
dx =

∞∫
−∞

f2(x) f1(ψ1(x, t))

∂1φ(ψ1(x, t), x)
dx . (17)

Proof Note that

Pr [φ(X1, X2) ≥ t] = Fφ(t) =
∫

Pr [φ(X1, X2) ≥ t |X1 = x] f1(x)dx .
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Since X1 and X2 are independent, we have

Pr [φ(X1, X2) ≥ t |X1 = x] = Pr [X2 ≥ ψ2(x, t)|X1 = x] = F2(ψ2(x, t)).

Substituting back into the integral yields the first expression. Note that

d

dt
φ(x, ψ2(x, t)) = 1 ⇔ ∂2φ(x, ψ2(x, t))∂tψ2(x, t) = 1

or

∂tψ2(x, t) = 1

∂2φ(x, ψ2(x, t))
. (18)

Then,

fφ(t) = −∂t Fφ(t)

=
∞∫

−∞
f1(x) f2(ψ2(x, t))∂tψ2(x, t)dx

Substituting Eq. (18) yields:

=
∞∫

−∞

f1(x) f2(ψ2(x, t))

∂2φ(x, ψ2(x, t))
dx

��
Proof of Theorem 2 Under our assumptions, every buyer’s information can be sum-
marized by Ti = φAi (Si ) and in any scalar mechanism for information profile A only
reports ti are required from buyers. In the concentrated environment A′, a scalar mech-
anism will require reports ti = Ti from buyers 3 through m, while it will ask buyer
c to submit a report tc = φ(t1, t2). Denote by fi (ti ), Fi (ti ) and [ai , ai ] the density,
distribution function and, respectively, support of the random variables Ti . Further,
denote by fφ and Fφ the density and distribution function of the random variable
φ(T1, T2). Denote by t−i and t−i j the vector of reports excluding buyer i or buyers i
and j .

Consider the virtual valuation of player c,

HA′
c (tc, t−12) = V A′

(tc, t−12)− Fφ(tc)

fφ(tc)
∂tc V A′

(tc, t−12).

Under the regularity assumption, HA′
c (·, t−12) is non-decreasing.

Following (Bulow and Klemperer 1996), for any mechanism η′ =(
p′

i , ξ
′
i

)
i∈{c,3,...,m}

in environment A′, the seller’s revenue is
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R(η′) =
∫ ⎛

⎝∑
i≥3

p′
i (ti , t−i )H

A′
i (ti , t−i )+ p′

c(tc, t−12)H
A′
c (tc, t−12)+ p′

0v0

⎞
⎠

× fφ(tc) f (t−12)dtcdt−12,

where v0 is the seller’s reservation value. Point-by-point maximization of the integrand
yields the optimal solution μA′

where

p′
i (ti , t−i ) = 1 ⇔ HA′

i (ti , t−i ) ≥ max
j �=i
(v0, HA′

c (tc, t−12), HA′
j (t j , t− j ))

and zero otherwise. Since the functions HA′
i are non-decreasing, HA′

i (ti , t−i ) ≥ v0

implies HA′
i (t ′i , t−i ) ≥ v0 for all t ′i ≥ ti . Further, for all j , and for all t ′i ≥ ti , by

Assumption 1 we have HA′
i (t ′i , t−i ) ≥ HA′

j (t
′
i , t−i ). In particular, for bidder c we

have

p′
c(tc, t−12) = 1 ⇔ HA′

c (tc, t−12) ≥ max
i
(v0, HA′

i (ti , t−i ))

and zero otherwise. We conclude thus that for any t−12 and v0, the set of types for
which bidder c gets the object is given by

Mc = {(t1, t2)|φ(t1, t2) = tc ≥ τ(t−12, v0)} .

for some function, τ . The expected payment received by the auctioneer from bidder c
is therefore,

ξA
′

c =
∫ ⎛

⎜⎝
∫

tc>τ(t−12,v0)

HA′
c (tc, t−12) fφ(tc)dtc

⎞
⎟⎠ f (t−12)dt−12.

Define

Q′(t) =
∫

tc>t

HA′
c (tc, t−12) fφ(tc)dtc,

then

ξA
′

c =
∫

Q′(τ (t−12, v0)) f (t−12)dt−12.

Consider a mechanism μA = (pi , ξi )i∈{1,2,...,m} for the environment A, with the
following properties p1(t1, t−1) ≡ 0, p2(t1, t2, t−12) ≡ p′

c(φ (t1, t2) , t−12) and
pi (ti , t−i ) ≡ p′

i (ti , t−i ) for all i ≥ 3. The mechanism μA is incentive compatible
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since all the functions are non-decreasing in own type.7 Furthermore, the expected
payment received from bidders 3 through n ,under μA and μA′

are the same.
The expected payment from bidder 2 in this case is therefore

ξA
2 =

∫ ⎛
⎜⎝

∫ ∫
Mc

HA
2 (t1, t2, t−12) f1(t1) f2(t2)dt1dt2

⎞
⎟⎠ f (t−12)dt−12.

Define

Q(t) =
∫ ∫

φ(t1,t2)≥t

HA
2 (t1, t2, t−12) f1(t1) f2(t2)dt1dt2,

then

ξA
2 =

∫
(Q(τ (t−12, v0))) f (t−12)dt−12.

In particular, we will show that for all t

Q′(t) = Q(t)

the expected payments of bidder c underμA′
and those of bidder 2 underμA coincide,

which makes the two mechanisms revenue-equivalent. Define

t1(t) = inf { t1| ∃t2, φ(t1, t2) = t} and t1(t) = sup { t1| ∃t2, φ(t1, t2) = t} , (19)

and note that Q(t) may be expressed as

Q(t) =
∫ ∫

φ(t1,t2)≥t

(
V A(t1, t2, t−12)− F2(t2)

f2(t2)
∂2V A(t1, t2, t−12)

)
f1(t1) f2(t2)dt1dt2

(20)

We consider each component separately. First,

∫ ∫
φ(t1,t2)≥t

V A(t1, t2, t−12) f1(t1) f2(t2)dt1dt2

=
t1(t)∫

t1(t)

∫
t2≥ψ2(t1,t)

V A(t1, t2, t−12) f1(t1) f2(t2)dt2dt1

7 Bidder 1’s payment will be zero.
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Fix t1 and introduce the change in variable t2 = ψ2(t1, tc),observing that dt2 =
∂tcψ2(t1, tc)dtc.

The integral becomes

t1(t)∫
t1(t)

∫
tc≥t

V A(t1, ψ2(t1, tc), t−12) f1(t1) f2(ψ2(t1, tc))∂tcψ2(t1, tc)dtcdt1

=
t1(t)∫

t1(t)

∫
tc≥t

V A(t1, ψ2(t1, tc), t−12) f1(t1) f2(ψ2(t1, tc))

∂2φ(t1, ψ2(t1, tc))
dtcdt1

=
∫

tc≥t

t1(t)∫
t1(t)

V A′
(tc, t−12) f1(t1) f2(ψ2(t1, tc))

∂2φ(t1, ψ2(t1, tc))
dt1dtc

=
∫

tc≥t

V A′
(tc, t−12)

t1(t)∫
t1(t)

f1(t1) f2(ψ2(t1, tc))

∂2φ(t1, ψ2(t1, tc))
dt1dtc

=
∫

tc≥t

V A′
(tc, t−12) fφ(t)dtc.

Where the first equality follows from Eq. (18), the second from (14) and Fubini’s
theorem, and the last by Lemma 4.

The second part of the integral in (20) is

−
∫ ∫

φ(t1,t2)≥t

(
F2(t2)

f2(t2)
∂2V A(t1, t2, t−12)

)
f1(t1) f2(t2)dt1dt2

= −
∫ ∫

φ(t1,t2)≥t

f1(t1)∂2V A(t1, t2, t−12)F2(t2)dt1dt2

= −
t1(t)∫

t1(t)

∫
t2≥ψ2(t1,t)

f1(t1)∂2V A(t1, t2, t−12)F2(t2)dt2dt1

= −
t1(t)∫

t1(t)

∫
tc≥t

f1(t1)∂2V A(t1, ψ2(t1, tc), t−12)F2(ψ2(t1, tc))∂tcψ2(t1, tc)dtcdt1

= −
t1(t)∫

t1(t)

∫
tc≥t

∂2V A(t1, ψ2(t1, tc), t−12)

∂2φ(t1, ψ2(t1, tc))
f1(t1)F2(ψ2(t1, tc))dtcdt1
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= −
∫

tc≥t

t1(t)∫
t1(t)

∂tc V A′
(tc, t−12) f1(t1)F2(ψ2(t1, tc))dt1dtc

= −
∫

tc≥t

∂tc V A′
(tc, t−12)

t1(t)∫
t1(t)

f1(t1)F2(ψ2(t1, tc))dt1dtc

= −
∫

tc≥t

∂tc V A′
(tc, t−12)Fφ(tc)dtc

Combining the two results we have

Q(t) =
∫

tc≥t

(
V A′

(tc, t−12) fφ(tc)− ∂tc V A′
(tc, t−12)Fφ(tc)

)
dtc

=
∫

tc≥t

(
V A′

(tc, t−12)− Fφ(tc)

fφ(tc)
∂tc V A′

(tc, t−12)

)
fφ(tc)dtc

=
∫

tc>t

HA′
c (tc, t−12) fφ(tc)dtc

= Q′(t)

which means that μA and μA′
generate the same expected revenue. However, under

μA, buyer 1 receives the good with probability zero. If the optimal mechanism in
environment A allocates to buyer 1 with strictly positive probability, then it is, by
definition, revenue superior to μA and hence to μA′

. ��

References

Armstrong M, Rochet J-C (1999) Multi-dimensional screening: a user’s guide. Eur Econ Rev 43(4–6):959–
979

Athey S, Levin J (2001) The value of information in monotone decision problems. Working Paper, MIT
Bagnoli M, Bergstrom T (2005) Log-concave probability and its applications. Econ Theory 26(2):445–469
Bergemann D, Valimaki J (2002) Information acquisition and efficient mechanism design. Econometrica

70(3):1007–1033
Biais B, Martimort D, Rochet J-C (2000) Competing mechanisms in a common value environment. Econo-

metrica 68(4):799–837
Bikhchandani S, Riley J (1991) Equilibria in open common value auctions. J Econ Theory 53(1):101–130
Bikhchandani S (2006) Ex post implementation in environments with private goods. Theor Econ 1(3):369–

393
Bulow J, Klemperer P (1996) Auctions versus negotiations. Am Econ Rev 86(1):180–194
Bulow J, Klemperer P (2002) Prices and the winner’s curse. RAND J Econ 33(1):1–21
Cantillon E (2008) The effect of bidders’ asymmetries on expected revenue in auctions. Games Econ Behav

62(1):1–25
Crémer J, McLean R (1988) Full extraction of the surplus in bayesian and dominant strategy auctions.

Econometrica 56(6):1247–1257

123



Common value environments 203

Dagen R, Richards D (2006) Merger theory and evidence: the baby-food case reconsidered. Tufts University
Department of Economics, Working Paper

Dalkir S, Logan JW, Masson RT (2000) Mergers in symmetric and asymmetric noncooperative auction
markets: the effects on prices and efficiency. Int J Ind Organ 18(3):383–413

DeBrock L, Smith J (1983) Joint bidding, information pooling, and the performance of petroleum lease
auctions. Bell J Econ 14(2):395–404

Froeb L, Shor M (2005) Auction models. In: Harkider JD (eds) Econometrics: legal, practical, and technical
issues, pp 225–246. American Bar Association Section of Antitrust Law

FTC/DOJ (2004) Joint workshop on merger enforcement. February 17–19, Washington, D.C.
Goeree JK, Offerman T (2002) Efficiency in auctions with private and common values: an experimental

study. Am Econ Rev 93(3):625–643
Jackson MO (2009) Non-existence of equilibrium in vickrey, second-price, and english auctions. Rev Econ

Des 13(1):137–145
Klemperer P (2005) Bidding markets. UK Competition Commission, Occasional Paper No 1
Klemperer P (1998) Auctions with almost common values: the ‘wallet game’ and its applications. Eur Econ

Rev 42(3–5):757–769
Krishna V, Morgan J (1997) (anti-) competitive effects of joint bidding and bidder restrictions. Penn State

University and Princeton University, Working Paper
Mares V, Harstad RM (2003) Private information revelation in common-value auctions. J Econ Theory

109(2):264–282
Mares V, Shor M (2008) Industry concentration in common value auctions. Econ Theory 35:37–56
Mares V, Shor M (2012) On the competitive effects of bidding syndicates. B.E. J Econ Anal Policy [Frontiers]

12:1–32
Matthews SA (1984) Information acquisition in discriminatory auctions. In: Boyer M, Kihlstrom RE (eds)

Bayesian models in economic theory. Elsevier Science, pp 181–207
McAfee RP, Reny PJ (1992) The competitive effects of mergers between asymmetric firms. Correl Inf Mech

Des 60(2):395–421
Myerson R (1981) Optimal auction design. Math Oper Res 6(1):58–73
Persico N (2000) Information acquisition in auctions. Econometrica 68(1):135–148
Prékopa A (1971) Logarithmic concave measures with application to stochastic programming. ACTA Sci

Math (Szeged) 32:301–316
Prékopa A (1973) On logarithmic concave measures and functions. ACTA Sci Math (Szeged) 34:335–343
Reny PJ, Zamir S (2004) On the existence of pure strategy monotone equilibria in asymmetric first-price

auctions. Econometrica 72(4):1105–1125
Thomas CJ (2004) The competitive effects of mergers between asymmetric firms. Int J Ind Organ 22(5):679–

692
Tschantz S, Crooke P, Froeb L (2000) Mergers in sealed vs. oral auctions. Int J Econ Bus 7(2):201–213
Waehrer K, Perry MK (2003) The effects of mergers in open-auction markets. RAND J Econ 34(2):287–304
Werden GJ, Froeb LM (1994) The effects of mergers in differentiated products industries: logit demand

and merger policy. J Law Econ Organ 10(2):407–426

123


	Information concentration in common value environments
	Abstract
	1 Introduction
	2 Model
	3 Scalar mechanisms
	4 Information concentration
	5 Discussion
	Appendix
	Proof of Theorem  1
	Proof of Theorem  2
	Notation


	References


