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Abstract. This paper investigates decision quality in large choice sets across several choice
architectures in three studies. In the first controlled experiment, we manipulate two
features of a choice architecture—the response mode (for ranking alternatives) and pre-
sentation mode (for presenting alternatives). Our design objectively ranks all 16 choice
options in each choice set and makes it possible to observe decision quality directly, in-
dependent of attitudes toward risk. We find joint presentation outperforms separate
presentation and that choice response modes outperform “happiness ratings,” which
outperform hypothetical monetary valuations. We also apply classic welfare criteria to
assess the performance of the architectures. Our key finding is that low cognitive reflection
subjects (as measured by the cognitive reflection test) perform better given a large choice set
than given smaller sets collectively containing the same alternatives. This illustrates a basic
tradeoff confronting choice architectures: for a fixed choice set, fewer options improve
decision quality within that set but require architectures to elicit multiple responses, in-
creasing opportunities for errors. One follow-up study demonstrates the robustness of
the response mode result in a comparison using the tournament presentation mode. A
second follow-up study reveals that the impact of incentivizing monetary valuations de-
pends on cognitive reflection.
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1. Introduction
Making good economic decisions is desirable for both
individual welfare and achieving social goals. Suboptimal
or lower-quality decisions, such as choosing a dominated
option, can reduce the decisionmaker’swelfare relative
to what could have been achieved. Additionally, if the
suboptimal decisions result in inappropriate health
insurance plans or insufficient retirement savings, for
example, the decisions also likely impose a cost on society.
However, error-prone decision making has long been
recognized as a fact of life, embodied in Alexander Pope’s
famous statement, “To err is human.”Although shunned
by the classic economic models of the 1950s and 1960s,
this fact is widely recognized in behavioral economics
today. This has led to an increased emphasis on choice
architecture, in which the goal is to “nudge” partici-
pants toward decisions that are both individually and
socially optimal by manipulating the decision-making

environment. Yet the properties that determine effective
choice architectures are not fully understood.
Building on the design in Besedeš et al. (2015), this

paper uses experiments to systematically test for the
effectiveness of two general features of a choice ar-
chitecture: (1) the response mode (how rankings over
alternatives are expressed), and (2) the presentation
mode (how information is presented). Our design
enables us to consider a basic tradeoff between pre-
sentation complexity (number of alternatives presented
at once) and response complexity (the number of dis-
crete responses required by the architecture). Although
it is generally understood that decision making is
better in smaller choice sets (see Besedeš et al. 2012a, b),
decomposing a large choice set into a series of small
ones may not necessarily result in improved deci-
sion making (see Besedeš et al. 2015). Once we fix the
size of a choice set, smaller presentation sets may
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improve average decision quality per response but require
architectures to elicit multiple responses, increasing the
opportunity for error. This tradeoff suggests a novel
implication: if error rates are sufficiently high, smaller
presentation sets may actually reduce decision quality.

In our primary study, we consider three response
modes—direct choice among a set of options, subjective
happiness ratings of options, and monetary valuations
of options. Under direct choice, decision makers select one
of the available options from each choice set. For subjective
happiness ratings, decision makers rate each option in the
choice set on an emoticon scale, reflecting howhappy each
optionmakes them. For monetary valuations, decision
makers specify their maximum willingness to pay for
each option in dollars. Of these response modes, direct
choice is the one encountered most frequently in making
decisions. Monetary valuation requires one to think very
precisely about the value of every option and in this re-
spectmay be themost difficult andmost time-consuming.
Response modes similar to happiness ratings include
quality and satisfaction ratings of restaurants, books,
movies, and other consumption experiences. Direct
choices, ratings, and valuations are three of the classic
response modes in the judgment and decision-making
literature, although they have to date been primarily
used to study the consistency of preferences across response
modes, rather than the optimality of decisions across
response modes. Our design enables us to utilize these
classic response modes to go beyond studying consis-
tency of preferences and study their possible role in
making better decisions. In our design all choice options
can be ranked according to stochastic dominance, en-
abling us to objectively rank the available choices, and
observe decision-making quality in a way that is not con-
taminated by subjects’ attitudes toward risk or other
unobservable idiosyncratic properties of preferences.

Our choice of response modes was also motivated by
the possibility that different response modes may induce
different decision-making processes. For instance, it seems
plausible that an emoticon scale (or subjective happiness
rating) increases reliance on feelings, whereas a pricing
task may increase reliance on calculation. If choosing
by calculation is a superior decision-making strategy,
especiallywhen choices involvewell-defined probabilities
and monetary outcomes, one might predict that per-
formance will be superior in the monetary valuation
response mode. Alternatively, if relying on feeling and

intuition (going with your gut) is a better strategy for
decision making, especially when the choice set is large,
one might predict better performance on the emoticon
response mode. Finally, if one views decision makers as
well-adapted to choice tasks, constantly facing discrete
choices in the environment and rarely providing explicit
ratings or prices, onemight predict superior performance
under the choice response mode.
One feature of a choice architecture that varies across

response modes is the degree to which the response
mode constrains the possible responses for a choice set
of a given size. A highly constrained response mode,
such as a single direct choice, admits only n possible
response patterns for a choice set with n alternatives. In
contrast, an emoticon scale is less constrained in that
each of the n options is given a rating on a scale with m
possible ratings per option. The monetary valuation task
is even less constrained than the rating scale, because each
of the n options can be assigned any monetary value
(between $0.00 and $20.00 in our experiment). One may
also view the degree to which a response mode does not
constrain responses as indexing the complexity of the re-
sponse mode, with response modes requiring more re-
sponses per choice set (e.g., rating each item) andpermitting
a larger range of responses per item as beingmore complex.
We also consider twomain presentationmodes—joint

presentation (all options are presented simultaneously)
and separate presentation (each option is presented
one at a time, in isolation). A variety of studies have
documented that the order in which information such
as risks and benefits is presented or acquired can sig-
nificantly affect choices (Bergus et al. 2002, Arieli et al.
2011, Aimone et al. 2016).However, it is not clear a priori
whether choices presented jointly will produce higher-
quality decisions than separate presentation of alter-
natives. Under expected utility theory, any lottery has its
own value, independent of other choice alternatives. If
the only presentation mode effect at work is due to
choice overload, one might predict that evaluating each
option in isolation avoids the paralyzing effect on
choice of seeing many complex options simultaneously.
However, evaluating each option in isolation may also
require one to remember how each previous alternative
was valued. In this respect, decision quality in presen-
tation modes may be affected by this tradeoff between
the complexity of joint presentation and the memory
required for separate presentation.
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The previous literature on response mode and pre-
sentation mode effects has focused on inconsistencies
(preference reversals) across response modes and not
the decision quality (selection of dominant versus dom-
inated choices) induced within response modes or
presentation modes. For instance, the literature on
response mode effects hasmostly examined preference
reversals across responsemodes (e.g., the pricing–choice
reversals identified by Lichtenstein and Slovic 1971
and the pricing–rating reversals identified by Slovic
et al. 2007). Similarly, the literature on behavior under
different presentation modes has also focused on the
identification of preference reversals across presen-
tation modes (the joint–separate reversals identified
by Hsee 1996, Hsee et al. 1999, and Hsee and Zhang
2010, and the comparative ignorance effect identified
by Fox and Tversky 1995). Two papers that do look at
dominance in presentation modes are Hsee (1998) and
List (2002), and both find that people are better able to
value two options at once rather than one option at
a time using a pricing response mode. However, these
two studies both used a between-subjects design even
within the separate presentation mode, and thus
under their design no single subject could provide
valuations that reveal a preference for the dominated
option. In addition, these studies do not consider the
large choice sets that are reflective of many economic
situations.

Choice architecturemay be seen as the “engineering”
branch of behavioral economics, perhaps analogous to
how Roth (2002) envisioned mechanism design as the
engineering branch of game theory. Whereas mecha-
nism design analyzes how behavior changes in re-
sponse to normatively relevant incentives (e.g., changes
in monetary payoffs), choice architecture analyzes how
behavior changes in response to normatively irrelevant
features of the decision task (e.g., changes in framing,
response mode, or presentation mode). Choice architec-
ture has many practical applications, such as increasing
revenue through the presentation and organization
of a grocery store (Reutskaja et al. 2011), designing
healthcare plans or presenting healthcare information
in a manner that helps people select the best plan for
themselves (Peters et al. 2007), designing retirement
pension plans to increase employee saving (Thaler and
Benartzi 2004), and designing the presentation of nu-
tritional information to promote healthier food choices

(Downs et al. 2009). These applications highlight basic
questions about the principles underlying the selec-
tion of optimal or welfare-improving choices. Such
basic questions as which response mode and which
mode of presenting information lead to the most ef-
ficient welfare outcomes served as the motivation
behind our study.
The options in our design constitute a choice set of

16 lotteries with different expected payoffs, whose
outcomes are distributed over 12 possible states with
predefined probabilities. These may be viewed as
stylized versions of insurance plans, retirement plans,
or financial investments. By varying the response mode,
we can identify which method of eliciting rankings is
most effective in producing high-quality choices. By
varying the presentation mode, we can identify whether
providing complete information (presenting all 16 op-
tions simultaneously) or incremental information (pre-
senting one option at a time) leads to better decisions
for large choice sets. We also examine subject het-
erogeneity and test whether reflective thinkers per-
form better than intuitive thinkers across architectures
using a version of the cognitive reflection test
(Frederick 2005, Toplak et al. 2014).
For the choice task, the joint presentation mode is

compared with a tournament architecture in which
participants choose between four disjoint subsets of
the overall choice set and then choose among their
chosen options in a “final four” round. We include this
architecture because Besedeš et al. (2015) found this to
be best among architectures using the choice response
mode at helping individuals make optimal choices.
Across all subjects in our studies, we find the per-

sistent ranking that a choice responsemode outperforms
a happiness rating response mode, which in turn out-
performs a pricing mode, and that joint presentation
yields better performance than presenting each option
sequentially. An important additional finding is that
choice architectures need to account for individual
differences in nuanced ways: when designing a choice
architecture for a fixed choice set (in our case of size 16),
there is a fundamental tradeoff between the number of
options presented at once and the number of responses
required by the decision maker. In particular, partici-
pants with low scores on the cognitive reflection test
(CRT) performed best on the “choose one of 16” ar-
chitecture, whereas moderate and high scorers on the
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CRT performed best overall on a tournament-style
architecture.1 This presents something of a puzzle. If the
low-CRT participants can perform fairly well in a 16-
item choice set, one might suspect they would do even
better in a tournament-style architecture in which they
choose among just four options at a time. We show that
this puzzle is plausibly explained by a simple error
rate model that assumes (1) that low-CRT participants
have larger error rates than high-CRT participants, and
(2) that for a fixed CRT level, error rates are larger from
larger choice sets than from smaller choice sets. The key
observation to note is that the tournament architecture
requiresmultiple responses, increasing opportunities for
error. If low-CRT participants have sufficiently high
error rates in four-item choice sets, when confronted
with a series of such choice sets, they have more op-
portunities for error than in the “choose one” archi-
tecture. However, because higher-CRT subjects have
lower error rates, they can benefit more from the
tournament architecture. In the simple error rate
model in Section 5 we solve for the unique error rates
across CRT groups and choice set sizes. It turns out
that assumptions (1) and (2) noted above are necessary
conditions for the simple error rate model to fit the
observed data exactly.

In this first study, we also find that high-CRT sub-
jects perform better across all architectures than low-
CRT subjects. For both ratings and valuations, we find
joint presentation to considerably outperform separate
presentation, and we find less-constrained response
modes to marginally outperform more constrained
response modes.

We report two additional studies aimed at under-
standing the robustness of our initial findings. In our
second study we use the happiness rating and pricing
modes in a tournament structure similar to that used in
the first study with the direct choice response mode.
We show that the response mode ranking of choice,
happiness, and payment is robust to this presentation
mode. Our third study considers the effect of making
the pricing response incentivized rather than hypo-
thetical as in the first two studies. In this study subjects
identify theirmaximumwillingness to pay for an option,
both in joint and separate presentation modes, using
an incentive compatible mechanism that results in the
subject purchasing an option. Ultimately, we find
making payments incentivized does not impact decision

quality among low-CRT scores but may lead to better
decision making for higher-CRT individuals.
In terms of identifying the optimal architecture,

considering the welfare of low-CRT, medium-CRT,
and high-CRT participants, there is no architecture
that dominates across all CRT levels (no architecture
is Pareto efficient) in our data. Instead, the optimal
architecture depends on the social welfare criterion that
a policy maker prefers to implement. In particular, for
our experiment, John Rawls’ (1971) maximin criterion,
which helps the demographic with the lowest welfare,
favors the architecture involving a single direct choice
from a 16-item choice set, whereas Harsanyi’s (1955)
utilitarianwelfare criterion,whichmaximizes the average
welfare of individuals in society, favors the tourna-
ment architecture involving five direct choices, each
from a four-item choice set.

2. Identifying Optimal and Efficient
Choice Architectures

We consider simple choice architectures that are de-
fined to be a pair (R, P), where R is a response mode
and P is a presentation mode. We let R ∈ {r, v, c}, where
r is a happiness rating task, v is a monetary valuation
task, and c is a choice task. We let P ∈ { j, p, s}, where j
is a “joint” presentation mode (all options are pre-
sented simultaneously), p is a partial presentation
mode (different subsets of the choice set are presented
together), and s is a “separate” presentation mode (all
options are presented individually, in isolation). Our
design contains six choice architectures: (R, P) = (r, j),
(r, s), (v, j), (v, s), (c, j), (c, p).
Thus, the happiness rating and valuation tasks are

shown both with all options at once and with each
option presented separately. For one of the direct choice
tasks, options were displayed all at once. The other
choice task, (c, p), is the benchmark best-performing
choice architecture (the “choice tournament” architec-
ture from Besedeš et al. 2015) in which a large choice
set is divided into a number of equally sized smaller
choice sets, with the decision maker selecting one
option from each small choice set. The final decision
is then made over all options selected in each of the
smaller choices sets.
In our first study we were primarily interested in

comparing joint versus separate presentation modes, and
choice, rating, andmonetary valuation (pricing) response
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modes. We included the tournament architecture pri-
marily because it performed best in the study of Besedeš
et al. (2015), who considered only variations of choice
response modes. Concerned about the possibility of
subject fatigue if we included too many architectures,
we did not consider variations in the tournament
architecture in our base study.

In one follow-up study (Section 7), we do contrast
the choice tournament with rating and pricing tour-
naments. This provides a robustness check and enables
us to determine whether it is the tournament style
architecture or whether it is primarily the choice re-
sponse mode that drives performance in this architec-
ture. In another follow-up study (Section 8), we consider
joint versus separate presentation modes with in-
centivized monetary valuation tasks.

We are interested in whether some choice architec-
tures lead to better normative behavior (i.e., a higher
likelihood of choosing the optimal option) than others.
In particular, we ask the following questions:
(1) Does separate presentation of alternatives im-

prove decision making when the choice set is large,
holding the response mode fixed? To be specific, does
(r, s) perform better than (r, j) and does (v, s) perform
better than (v, j)? Or do people perform better when
having all options presented simultaneously even when
the choice set is large?
(2) Do more numerical or calculation-based response

modes (such as a monetary valuation task) improve
decision making relative to more qualitative or feeling-
based response modes (such as a happiness rating task),
holding the presentation mode fixed? More precisely,
does (v, s) perform better than (r, s), and does (v, j)
perform better than (r, j)?) Or do people perform better
when making qualitative assessments than when speci-
fying a precise willingness to pay?
(3) Do more-constrained response modes (those with

fewer possible responses per option) perform better
than less-constrained responsemodes (those withmore
possible responses per option)?
(4) Does heterogeneity in cognitive reflection account

for heterogeneity in performance across architectures?
Do participants who differ in cognitive reflection
perform best on the same choice architectures?
(5) Which architectures perform best according to

classic welfare criteria (such as Pareto efficiency, Rawls’
maximin criterion, and Harsanyi’s utilitarian criterion)?

Our design enables us to investigate each of these
questions. The results inform whether the response
mode and the presentation mode (and their in-
teraction) can facilitate higher-quality choices. To our
knowledge, this issue has not been addressed in the
literature.
We use a design, building on Besedeš et al. (2015),

in which choices can be objectively ranked across
different configurations of response modes and pre-
sentation modes. Our design enables us to conduct a
within-subjects experiment to study the optimality
of response modes and presentation modes (whether
some response modes or presentation modes system-
atically induce better decisions).

3. Experimental Design
We tested the performance of six different choice ar-
chitectures, systematically varying the response mode
(how subjects express their choices) and the presentation
mode (how options were presented) across architectures
using awithin-subject design. In each case, the choice set
involves 16 lotteries, each with 12 different mutually
exclusive and exhaustive states. In each state, a given
lottery either pays $0 or $20. A single state is randomly
selected to determine payment. A unique feature of our
design is that these lotteries can be ranked using sto-
chastic dominance. In other words, we can objectively
rank the 16 options, independent of subjects’ attitudes
toward risk. Consequently, we can directly evaluate the
performance of different choice architectures, different
response modes, and different presentation modes
according to how frequently they induce optimal
choices or according to how close subjects come to
obtaining the best option in each task. The experi-
ment can be accessed at www.mikeshor.com/research/
choicearchitecture.html.

3.1. Options
The 12 possible states of the world were described as
types of Cards and numbered 1–12. The likelihood of
a particular state of the world was determined by the
number of cards of that type that were present in
a virtual deck of 100 cards. The number of cards
of a particular type was referred to as the odds. The
16 lotteries were referred to as Options and were let-
tered A to P. Each option contained different cards
(states of the world), with no two options containing
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the same set of cards. Table 1 shows the 16 options that
were used in the experiment.

In Table 1, a check-mark appearing below a partic-
ular option indicates that the option contains that card.
Selecting an option would result in the subject earning
$20 if a card contained by the chosen option were
drawn and $0 if a card not contained by the chosen

option was drawn. Thus, option X is a better choice than
option Y if option X pays $20 for a greater percentage of
the cards in the deck (i.e., has a greater probability of
paying $20). For example, option A in Table 1 is the best
option, whereas option P is the worst because it implies
the lowest probability of payment. The order of options
and cards was randomized for each subject for each

Table 1. Options and Odds

6-state setup 12-state setup Options

Card PDF Card PDF1 PDF2 A B C D E F G H I J K L M N O P

I 19 1 10 7 3 3 3 3 3 3 3 3 3 3
2 4 10 3 3 3 3 3 3 3 3 3 3
3 5 2 3 3 3 3 3 3 3 3 3 3

II 15 4 15 15 3 3 3 3 3 3 3
III 22 5 14 9 3 3 3 3 3 3 3 3

6 8 13 3 3 3 3 3 3 3 3
IV 24 7 11 16 3 3 3 3 3 3 3 3 3

8 13 8 3 3 3 3 3 3 3 3 3
V 12 9 4 3 3 3 3 3 3 3 3 3 3 3

10 2 4 3 3 3 3 3 3 3 3 3 3
11 6 5 3 3 3 3 3 3 3 3 3 3

VI 8 12 8 8 3 3 3 3 3 3 3 3 3 3 3 3

Card PDF Cards PDF3 PDF4 A B C D E F G H I J K L M N O P

I 19 1 19 19 3 3 3 3 3 3 3 3 3 3
II 15 2 5 2 3 3 3 3 3 3 3

3 6 3 3 3 3 3 3 3 3
4 4 10 3 3 3 3 3 3 3

III 22 5 22 22 3 3 3 3 3 3 3 3
IV 24 6 10 6 3 3 3 3 3 3 3 3 3

7 14 18 3 3 3 3 3 3 3 3 3
VI 12 8 3 5 3 3 3 3 3 3 3 3 3

9 2 4 3 3 3 3 3 3 3 3
10 7 3 3 3 3 3 3 3 3 3 3

VI 8 11 5 7 3 3 3 3 3 3 3 3 3 3 3
12 3 1 3 3 3 3 3 3 3 3 3 3 3

Card PDF Card PDF5 PDF6 A B C D E F G H I J K L M N O P

I 19 1 4 13 3 3 3 3 3 3 3 3 3 3
2 15 6 3 3 3 3 3 3 3 3 3 3

II 15 3 9 11 3 3 3 3 3 3 3
4 6 4 3 3 3 3 3 3 3

III 22 5 10 5 3 3 3 3 3 3 3 3
6 5 7 3 3 3 3 3 3 3 3
7 7 10 3 3 3 3 3 3 3 3

IV 24 8 13 14 3 3 3 3 3 3 3 3 3
9 8 7 3 3 3 3 3 3 3 3 3
10 3 3 3 3 3 3 3 3 3 3 3

V 12 11 12 12 3 3 3 3 3 3 3 3 3 3
VI 8 12 8 8 3 3 3 3 3 3 3 3 3 3 3 3

Payoffs 80 73 66 65 63 61 59 57 58 56 51 54 44 42 39 35

Note. PDF, probability distribution function.
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choice architecture and relabeled sequentially from
option A to option P and from card 1 to card 12.

Six different decks of cards were used in the ex-
periment (one for each choice architecture), selected at
random without replacement. Moreover, the decks
were constructed in such a way that the probability an
option would result in a payment of $20 was held fixed
across the six decks of cards. To achieve this, we started
with a master design with only six states (cards labeled
I–VI) and 16 options designed so that each option
covers either three or four of the attributes. We then
subdivided some of the six states (and their probabil-
ities) into multiple new states, while preserving each
lottery’s coverage. That is, if an option contained the
card in the six-state design, it also contained all sub-
divided states. The first column in Table 1 in each of the
three panels presents the same six-attribute master de-
sign. In the first panel cards I and V are each split into
three new cards, and cards III and IV are split into two
new cards. In the second panel cards II and V are each
split into three new cards, and cards IV and VI are split
into two new cards each. In the third panel cards III and
IV are split into three cards each and cards I and II into
two cards each. By varying how the probability assigned
to a card in the 6-state design is split among the new
cards in the 12-state design, we created two different
probability distributions across the 12 states. We do so
in each panel for a total of six different probability
distribution functions (PDFs). The variety of PDFs con-
ceals the similarity of options across tasks. Importantly,
however, this design preserves the probability with
which each option results in a payment. This is similar
to how Besedeš et al. (2012a) add additional attri-
butes in their experiment but with the added ad-
vantage that option payoffs are held constant across
the six PDFs.

3.2. Choice Architectures
Each subject provided responses to each of the fol-
lowing six choice architectures:

1. Simple choice architecture (c, j): The simple choice
architecture explicitly asked subjects to select their most
preferred option and presented all 16 options at once.
Subjects only had to click the “Select” button beneath
their chosen option and confirm their response. This
task, shown in the top panel of Figure 1, involves a
choice response mode and a joint presentation mode.

2. Sequential tournament (c, p): The sequential tour-
nament architecture decomposes the 16-option choice set
into four choice sets, each with four options. Subjects
are asked to choose from each of the four choice sets.
A subject’s chosen options from these sets are combined
into a “final four” round inwhich the subject chooses one
of the four previously chosen options as the final choice.

3. Rating all at once (r, j): The rating all at once ar-
chitecture asks subjects to provide a happiness rating for
each option on a seven-point scale with endpoints of
happy and neutral emoticons.2 Subjects are informed
that if they rate one option higher than all others, that
will be their selected option. Subjects are also informed
that if there is a tie for the highest rated option, then
each tied option is equally likely to be the selected
option, and one is randomly assigned. The rating all at
once architecture is depicted in the middle panel of
Figure 1 and involves a joint presentation mode.

4. Rating one at a time (r, s): The rating one at a time
architecture is identical to rating all at once, both in visual
appearance and in the rules for determining payoffs,
except that options are now presented sequentially (in
random order), and each subject is asked to rate each
option individually (viewing only one option at a time).

5. Pricing all at once (v, j): The pricing all at once
architecture asks subjects to record their maximum will-
ingness to pay for each option. The willingness to pay is
hypothetical, and the subjects know there is no explicit
cost for selecting an option. Subjects are informed that
the option with highest recorded price will be the one
selected as their preferred option. Subjects are also in-
formed that if there is a tie for the highest valued option,
a random draw will determine the selected option. This
architecture involves a pricing responsemode and a joint
presentationmode and requires the subject’s valuation to
be entered into the box at the bottom panel of Figure 1.

6. Pricing one at a time (v, s): The pricing one at a time
architecture is identical to pricing all at once, both in visual
appearance and in the rules for determining payoffs,
except that options are now presented sequentially (in
random order), and each subject is asked to price each
option individually (viewing only one option at a time).

3.3. Subjects
One hundred twenty undergraduate students at a
private California university participated in the ex-
periment. Subjects were recruited from a standing pool
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of volunteers who had not participated in any related
study. Each session included 24 subjects. Subjects
received $7 for participating, in addition to any salient
earnings.

3.4. Protocol
The six different architectures and six PDFs were
presented in random order. The order in which options
and cards were presented were randomized within

Figure 1. (Color online) Choice, Rating, and Pricing Architectures Under Joint Presentation
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each architecture, although the first option was always
labeled A and the first card was labeled card 1. After
making their choice(s) for each architecture, subjects
were presentedwith a deck of 100 cards, each containing
cards numbered 1–12, with the number of each card
corresponding to the odds of the PDF used for that
architecture. Subjects would then turn over the cards by
clicking on them, which would also trigger their shuf-
fling. Once the deck was shuffled, the subject could turn
over one card by clicking on any of the 100 cards. This
card would determine whether subjects would earn
a payment for that architecture: as long as the option
they selected or rated as their most preferred one
(either by assigning highest happiness rating or highest
willingness to pay), they would receive $20 as payment
for that architecture. In case of multiple most-preferred
options ties were broken by randomly assigning one
of the tied options. After completing all six tasks,
subjects responded to a brief questionnaire including
demographic questions and the seven-question cog-
nitive reflection test or CRT (Toplak et al. 2014), which
extends the three-question CRT from Frederick (2005).
As explained to subjects in advance, a physical die was
rolled by the experimenter once all subjects had com-
pleted all tasks and the questionnaire, to determinewhich
task would count for payment. Subjects were paid in
cash, with average salient earnings of $15.17 per subject.

4. Results
We focus on three measures of performance for com-
paring architectures: (1) the average rank of the selected
option under that architecture (where an average rank of
1 would indicate that all subjects chose the best option,
whereas an average rank of 2 would indicate that on
average subjects chose the second best option as their
preferred choice); (2) the percentage of subjects who
chose the best option under that architecture; and
(3)money left on the table, whichmeasures the difference

between the probability of receiving a payment under the
optimal option and the probability of receiving the
payment under the chosen option (multiplying this
measure by the size of the monetary payment reveals
how much money was forgone by choosing sub-
optimally). When ties occurred that contained the
best option, for (1) we computed the average rank of all
tied options, for (2) we computed the probability of
choosing the best option as 1/t, where t is the number
of tied options (because each of the tied options was
equally likely to be randomly assigned), and for (3) we
computed the average money left on table across all
chosen options.
We will refer to the first metric as welfare ranking or

“efficiency”3 and the second as optimality. We refer to
a task as the efficient architecture for a group of subjects
if it assigns those subjects the best average ranked option
among the 16 options, relative to the other architectures.
The average rank of assigned lotteries is shown for all
six architectures in Table 2, with the results broken
down by the CRT score of the subjects. We will refer
to a task as the optimal architecture for a group of
subjects if it maximizes the average probability of
selecting the best option for those subjects. A similar
breakdown for optimal architectures and for money
left on the table is provided in Figures 2 and 3. Subjects
were grouped according to how many of the CRT
questions they correctly answered and were classified
into roughly equal-sized categories of lowCRT,medium
CRT, and high CRT, according towhether they correctly
answered two or fewer questions, three or four ques-
tions, or five or more questions correctly, respectively.

4.1. Optimality of Presentation Modes
As noted in the introduction, previous literature has
tested for consistency of preferences across response
modes and presentation modes (e.g., Lichtenstein and
Slovic 1971, Hsee 1996, Slovic et al. 2007); but to our

Table 2. Efficiency: Average Rank of Assigned Option Across All Six Choice Architectures

CRT group
No. of
subjects

Choice
tournament

Choice
joint

Rating
joint

Pricing
joint

Rating
separate

Pricing
separate Average rank

Low 42 3.190 2.310 3.441 3.976 3.406 4.658 3.497
Medium 38 1.632 2.737 2.488 3.278 2.721 3.177 2.672
High 40 1.275 1.575 1.475 1.934 3.399 3.521 2.196
All 120 2.058 2.200 2.484 3.074 3.187 3.810 2.802
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knowledge, the optimality of response modes and pre-
sentation modes (whether some response modes
or presentation modes systematically induce better
decisions) has not been investigated.

In our experiment the rating and pricing response
modes enable us to compare joint presentation of al-
ternatives (displaying all 16 options at once) with
separate presentation (displaying only one option at
a time). For a fixed response mode, we find that joint
presentation performs significantly better in inducing
a higher welfare ranking than separate presentation.
For instance, rating all at once achieves a 0.703 better
average ranking than rating separately (p < 0.05, two-

tailedWilcoxon signed rank test), and pricing all at once
achieves a 0.736 better average ranking than pricing
separately (p < 0.10, two-tailed Wilcoxon signed rank
test). However, when computing welfare for each CRT
group, this difference is only significant for the high-
CRT group4 (for high-CRT subjects, rating options
jointly outperforms rating separately [p < 0.002], and
pricing jointly outperforms pricing separately [p <
0.02], two-tailedWilcoxon signed rank tests). Similarly,
joint presentation produces more optimal choices than
separate presentationmode. This finding holds for both
pricing and rating response modes. In particular, for
the rating response mode, joint presentation induced

Figure 2. (Color online) Optimality: Percentage of Optimal Assignments Across All Six Choice Architectures

Figure 3. (Color online) Money Left on Table as Measured by Loss in Probability of Winning Across Architectures
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71.8% optimal responses, and separate presentation
induced 58.5% optimal responses. This difference is
highly significant across all subjects (p < 0.02, two-tailed
Wilcoxon signed rank test). Similarly, for the pricing
response mode, joint presentation induced 67.7%
optimal responses, and separate presentation induced
52.3% optimal responses. This difference is also sig-
nificant across all subjects (p < 0.02, two-tailed Wil-
coxon signed rank test). However, when computing
the optimality for each CRT group, the advantage of
joint over separate presentation is only significant for
the high-CRT group5 (for high-CRT subjects, rating
options jointly outperforms rating separately [p < 0.01],
and pricing jointly outperforms pricing separately [p<
0.02], two-tailed Wilcoxon signed rank tests). The high-
CRT group experiences a large loss in performance
under separate presentation, whereas the medium-
and low-CRT groups only perform a little worse (but
not significantly so).

The Wilcoxon signed rank test results for average
welfare ranking also extend to the “money left on the
table” measure, which has the same ordinal ranking as
the average welfare measure. In terms of effect size,
high-CRT subjects leave roughly 50% more money
on the table under separate presentation than under
joint presentation for both the rating and pricing re-
sponse modes. In aggregate, the worst-performing
architecture under the money-left-on-the-table metric
(the pricing architecture under separate presentation)
leaves twice as much money on the table as the two
best-performing architectures for this metric (the choice
tournament and the simple choice architecture). Thus,
we find that for all 120 subjects taken collectively (and
for the subset of 40 high-CRT subjects), joint presenta-
tion performs better than separate presentation across
the three welfare criteria in Table 2 and in Figures 2
and 3. An alternative way to read this result is that all
subjects, regardless of CRT group, performed similarly
poorly in the separate presentation mode. In the joint
presentation mode, low- and medium-CRT subjects do
not significantly improve, whereas high-CRT subjects
are better able to evaluate the large 16-item choice set
and improve significantly when they can compare all
options simultaneously. Indeed, a plausible expla-
nation for the superior performance of joint pre-
sentation is that it makes cross-option comparisons
easier. With separate presentation modes, the subject

must recall previous options. This is a difficult task.
Although strategies for doing this may exist, it is not
clear subjects realize that they should or could be
applying them.

4.2. Optimality of Response Modes
For a fixed presentation mode, we can also consider
whether one response mode performs systematically
better than the others. Fixing the presentation mode
at joint presentation of alternatives, we observe that
choice performed significantly better than pricing in
terms of efficiency (two-tailed Wilcoxon signed rank
test, p < 0.01). Neither the difference in efficiency
between choice and rating or between rating and
pricing was significant. Within CRT groups, only the
differences in efficiency for the low-CRT group were
significant: choice outperformed rating (p < 0.05, two-
tailed Wilcoxon signed rank test), and choice out-
performed pricing (p < 0.01, two-tailed Wilcoxon signed
rank test). The size of the effect is also large, with the low-
CRT group performing more than one full rank better in
the choice response mode than in either the rating or
pricing response modes, as can be seen in Table 2.
None of the differences in percentage of optimal as-

signmentswere significant for different responsemodes.
However, the pattern that choice performs better than
rating and that rating performs better than pricing is
persistent in our data, even though these differences
are usually small and not significant. For instance, for
all 120 subjects, we consistently observe that under
joint presentation, choice outperforms rating and rating
outperforms pricing for each of the three metrics we
use. The money-left-on-the-table metric reveals that,
fixing the presentation mode at joint presentation, the
simple choice architecture leaves less money on the
table than the pricing architecture (p < 0.01, two-tailed
Wilcoxon signed rank test).
Under separate presentation, we again find that

rating outperforms pricing for all 120 subjects for each
of the three metrics. Moreover, in our study of choice,
rating, and pricing tournament architectures with
a different group of subjects (see Section 7), we observe
the same ranking across response modes for each of
the three metrics. Surprisingly, in every comparison
involving all subjects, for each of our performance
measures, we find the ranking that choice performs
better than rating, which performs better than pricing.
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The persistent ranking of response modes we ob-
served is consistent with the possibility that people
perform better onmore constrained responsemodes than
those that permit a larger range of possible responses
for each option. For joint presentation, choice requires
only one discrete response, which is more constrained
than rating, which permits seven possible ratings per
option, which in turn is more constrained than pricing,
which permits any response between $0.00 and $20.00
per option. Indeed, for the joint presentationmode, we
can rank all three response modes and observe overall
behavior consistent with this ranking of “constrained
responses” for both the optimality and efficiencymetrics
(with choice outperforming rating and rating outper-
forming pricing). One reasonmore constrained response
modes induce better performance might be that they
reduce the complexity of the choice architecture. For
rating and pricing, subjects are confrontedwith complex
options (each contingent on 12 possible states),6 a com-
plex choice set (16 options), and a complex response
mode (seven possible ratings or many more possible
valuations). The choice response mode minimizes this
added layer of complexity, so subjects need only deal
with the complexities of the options and the choice set.

4.3. Heterogeneity in Cognitive Reflection
and Performance

From Table 2 and Figures 2 and 3, we see that the
choice tournament performed best in terms of effi-
ciency optimality and money left on the table, vali-
dating its performance in Besedeš et al. (2015). However,
this difference is not significant when comparing the
choice tournament with the choice joint architecture or
with the rating joint architecture. Moreover, the low-
CRT group generally performed best in the task of
making one choice from all 16 options simultaneously,
although this performance was not significantly better
than the performance on the choice tournament. We

also observe remarkable predictive power of the CRT
in sorting out subject performance (see also, for ex-
ample, Table 2 and Figures 2 and 3), regardless of the
architecture. High-CRT subjects achieved 78.6% optimal
choices averaged across all architectures, but this de-
creases to 69.4% for the moderate-CRT group and to
53% for the low-CRT group (the difference in optimal
choices between high-CRT and low-CRT subjects is
significant [p < 0.02; two-tailed difference in proportions
test], but the difference between either of these groups
and the moderate CRT group is not). The money left
on the table, as shown in Table 5, is particularly large
for the low-CRT group (resulting in more than an eight
percentage point loss in the probability of winning, on
average across all architectures relative to choosing
optimally). Although in our experiment this is not
a large amount of money (a little more than $1.50), an
8% loss in wealth due to poor financial investing or
due to suboptimal selection of one’s healthcare plan
or insurance policy could be a significant amount of
money over time. In contrast, the high-CRT group
leaves very little on the table. From Figures 2 and 3 it
is clear that the average performance of all subjects
across all architectures closely tracks the performance of
the medium-CRT subjects for both the percentage of
optimal assignments and for money left on the table.

4.4. Response Time
The experimental software recorded the response time
for each subject and for each architecture. The median
response times across choice architectures and CRT
groups are presented in Table 3. Across all 120 subjects,
we see that the joint pricing task had the longest me-
dian response time, requiring slightly more than three
minutes for the median subject. In contrast, the joint
choice task had the smallest median response time,
requiring less than one and a half minutes for the
median subject. These differences are highly statistically

Table 3. Median Response Times (in Seconds) Across CRT Groups and Choice
Architectures

CRT group Tournament Choice Rating all Pricing all Rating separate Pricing separate

Low 159.77 78.96 153.75 158.70 140.68 169.02
Medium 167.79 79.05 131.02 177.19 125.09 128.72
High 185.12 78.47 149.98 206.51 139.29 185.09
All subjects 172.33 78.96 149.98 180.29 135.19 160.60
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significant: the joint pricing architecture has a signifi-
cantly longer distribution of response times than either
rating architecture or the simple choice architecture
(all p < 0.001, two-tailedWilcoxon signed rank test). The
differences in response times between the two pricing
architectures and between the joint pricing task and the
tournament architecture were not significant.

The simple choice architecture had significantly
faster response times than any of the other architectures
(all p < 0.001, two-tailed Wilcoxon signed rank test). It
is not surprising that the choice architecturewas fastest,
given that it required only a single response, whereas
the other architectures required multiple ratings, pri-
ces, or choices. However, it is surprising how well the
choice architecture performs, given that it is more ef-
ficient on the time dimension.

One might evaluate choice architectures on multiple
dimensions, such as the average rank assigned by the
architecture (efficiency in terms of outcomes) and the time
required by the architecture (efficiency in terms of time).
For architectures evaluated on these two dimensions, we
propose that a choice architecture A, strictly dominates
another architecture B, if A provides a more efficient
welfare ranking in a shorter amount of time. Com-
paring the median response times across all subjects
in Table 3 and the average rank of assigned options
in Table 2, we see that the simple choice architecture
strictly dominates all rating and pricing architectures (it
assigns both a lower average rank and requires a shorter
median response time). Moreover, when accounting for
the time dimension, the simple choice architecture is not
dominated by any other architecture because the only
architecture with a lower average rank (the choice tour-
nament architecture) had more than twice as long a me-
dian response time as the simple choice architecture.

4.5. Pricing Strategies
Whereas the previous section discussed heterogeneity
in performance due to cognitive reflection, this section
considers heterogeneity in strategies (e.g., for pricing
options in the choice set) due to cognitive reflection.
Figures 4, 5, and 6 display the strategies each subject
used for the low-, medium-, and high-CRT groups,
respectively, in pricing all 16 options in both the all-
at-once task (solid lines) and the one-at-a-time task
(dotted lines). Each figure displays the prices (between
$0.00 and $20.00) provided by each subject for each

option sorted in descending order from best to worst
(A through P). For the pricing all-at-once task, a clear
pattern that emerges with some regularity is a strategy
that prices the best option higher than all of the others
and assigns all other options the same price. This
strategy may conserve cognitive resources because
once the best option is identified there is no need to
deliberate how to assign prices to each of the inferior
options. We refer to this strategy as an “L” strategy
because it visually appears in the shape of the
letter L. From Figure 4 we see that three out of 42 low-
CRT subjects used a perfect L strategy. Three of 38
medium-CRT subjects used a perfect L strategy as can
be seen from Figure 5, whereas eight of 40 high-CRT
subjects used a perfect L strategy in Figure 6. There are
also several additional subjects who used a strategy
that could be termed a “noisy L,” inwhich there is some
oscillation in the horizontal portion of the L. Pooling
low-CRT subjects and medium-CRT subjects, we find
that high-CRT subjects are significantly more likely to
use a perfect L strategy for the pricing all-at-once task
than other subjects (p < 0.045, two-tailed two pro-
portions Z test).
For the pricing one-at-a-time task, an L strategy is

unlikely to appear because prices are provided se-
quentially, and a subject could not know whether
a better option was forthcoming. Indeed, the pattern
that emerges from the pricing one-at-a-time task is
one that more closely mimics that which would arise
from pricing each option at its expected value, al-
though for some subjects the pricing-one-at-a-time
strategy closely parallels their pricing-all-at-once
strategy. We show in Section 8 that, as suggested by
Figures 4, 5, and 6, correlations between prices and
expected values are higher for the “price one-at-a-time”
task than for the “price all-at-once” task in our primary
study.

4.6. Happiness Rating Strategies
Whereas the previous section discussed heterogeneity
in pricing strategies, this section considers heteroge-
neity in rating strategies (e.g., for rating options in the
choice set) due to cognitive reflection. Figures 7–9
display the strategies each subject used for the low-,
medium-, and high-CRT groups, respectively, in rating
all 16 options in both the all-at-once task (solid lines)
and the one-at-a-time task (dotted lines). Each figure
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Figure 4. (Color online) Pricing Strategies in Joint (Solid) and Separate (Dotted) Tasks for Low-CRT Subjects
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Figure 5. (Color online) Pricing Strategies in Joint (Solid) and Separate (Dotted) Tasks for Medium-CRT Subjects
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Figure 6. (Color online) Pricing Strategies in Joint (Solid) and Separate (Dotted) Tasks for High-CRT Subjects
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displays the ratings (between 1 and 7) provided by
each subject for each option, which are ordered in
a descending order from best to worst (A through P).
For the rating all-at-once task, the L strategy and noisy
L strategies again emerge with some regularity, in
which a subject rates the best option higher than all of
the others and assigns all other options the same (or
approximately the same) rating. As noted, this strat-
egy may conserve cognitive resources because once
the best option is identified there is no need to de-
liberate how to assign ratings to each of the inferior
options. That such L strategies emerge in both the
pricing and rating (all-at-once) tasks may suggest that
a common decision process guided behavior in both
tasks, despite the difference in response modes. As
before, L strategies and noisy L strategies appear con-
centrated among high-CRT subjects. From Figure 7
we see that 2 of 42 low-CRT subjects used a perfect L
strategy; 0 of 38 medium-CRT subjects used a perfect
L strategy, as can be seen from Figure 8, whereas 5 of
40 high-CRT subjects used a perfect L strategy, as seen
in Figure 9. In addition, many other high-CRT subjects
used a noisy L strategy. Pooling low-CRT subjects and
medium CRT subjects, we find that high-CRT sub-
jects are significantly more likely to use a perfect
L strategy for the rating all-at-once task than other
subjects (p < 0.03, two-tailed two proportions Z test).
The observations that high-CRT subjects are signif-
icantly more likely to use a perfect L strategy for both
the pricing all-at-once and the rating all-at-once ar-
chitectures suggest that the high-CRT subjects are
more likely to approach these tasks in the same
systematic way than the other subjects. For the rating
one-at-a-time task, the pattern that emerges more
closely mimics that which would arise from assign-
ing ratings that were monotonically increasing in the
expected value of an option.

5. A Simple Error Rate Model of
Decision Quality

We next consider in more depth the optimal (and
efficient) architectures for low-, moderate-, and high-
CRT groups. For the low-CRT group, the simple choice
architecture has the highest percentage of optimal as-
signments, the lowest average ranking (highest effi-
ciency), and the smallest amount of money left on the
table among all architectures. (However, the differences

in performance relative to the tournament architecture
are not statistically significant.7) In terms of efficiency,
the simple choice architecture was the only architecture
for the low-CRT group to assign better than the third
best of the 16 options, on average. Moreover, it assigned
nearly a full rank better than the tournament architec-
ture, which had the second-best efficiency ranking for
the low-CRT group. In particular, as shown in Table 2,
simultaneous choice produced an average rank of 2.31
out of 16 options (assigning low-CRT subjects nearly
the second-best option overall, on average). In con-
trast, the tournament produced an average rank of
3.19, suggesting that choosing among all 16 options at
once was better for the low-CRT group. In terms of
optimality, choosing from all 16 options at once was
the only architecture to produce over 60% optimal
assignments for the low-CRT group, approximately
a seven percentage point improvement over the tour-
nament architecture. We consider the implications of
these differences in performance for the low-CRT
group to illustrate how complexity and cognitive re-
flection might lead different architectures to be optimal
for different populations, with the caveat that the ob-
served differences between the two choice-based ar-
chitectures are not significant.
As can be seen from Table 2 and Figures 2 and 3, the

medium- and high-CRT groups both performed best on
the tournament architecture. In terms of optimality,
tournament offered roughly a 10 percentage point im-
provement over the simple choice architecture for the
moderate CRT group but produced less than a three
percentage point improvement over that architecture
for the high-CRT group. In terms of efficiency, the tour-
nament architecture achieved nearly a full rank better,
on average, than the next best architecture for the
moderate CRT group (two-tailed Wilcoxon signed
rank test, p = 0.048) but produced only a 0.2 better
rank, on average, compared with the next best archi-
tecture for high-CRT subjects.
What can explain the higher percentage of optimal

assignments and higher efficiency for the simple choice
architecture for the low-CRT group and the better per-
formance of the tournament architecture for the higher-
CRT groups? If the true effect is not entirely due to
chance, the better performance of the simple architecture
for the low-CRT group may seem particularly puzzling.
Both the simple choice architecture and the tournament
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Figure 7. (Color online) Rating Strategies in Joint (Solid) and Separate (Dotted) Tasks for Low-CRT Subjects
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Figure 8. (Color online) Rating Strategies in Joint (Solid) and Separate (Dotted) Tasks for Medium-CRT Subjects
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Figure 9. (Color online) Rating Strategies in Joint (Solid) and Separate (Dotted) Tasks for High-CRT Subjects
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involve the choice response mode, but the tournament
presents only four options at once, whereas the simple
choice architecture presents all 16 options. Surely if one
can choose the best option from a set of 16, that person
could choose the same best option from a set of 4.
Because we have fixed the response mode, should we
not expect better performance on the tournament
architecture because it presents the decision maker
with fewer options at each stage?

To address these questions we construct a simple
error rate model as an interpretive framework for
understanding the differences in performance between
the simple choice and tournament architectures for the
low-, moderate-, and high-CRT groups. To begin, con-
sider a world with three types of agents—those with
low, moderate, and high degrees of cognitive reflection
(labeled types l,m, and h, respectively). Suppose that
for each choice, agents of type θ∈ {l,m, h} have an error
rate of εθ(n), for choice sets of size n. It seems natural
to make the following two predictions:

(1) εl(n)> εm(n)> εh(n) for any n;
(2) εθ(n)>εθ(k) for all n>k, and for all θ∈{l,m,h}.

Prediction (1) is a monotonicity condition on agents.
It predicts that agents with higher cognitive reflection
have smaller error rates. Prediction (2) is a separate
monotonicity condition on the size of the choice set.
It predicts that for a given level of cognitive reflection,
larger choice sets induce larger error rates than smaller
choice sets. This latter condition may be further aug-
mented to control for the quality of the best option
relative to the alternatives (admitting the possibility that
some choices are inherently easy and others are inher-
ently difficult), but given that the same options were
used in the large and small choice sets for the tourna-
ment and simple choice architectures, this seems un-
likely to be an important dimension for our experiment.

We take the empirically observed percentages of
optimal choices in the simple choice architecture as
providing empirical estimates of the error rates from
a 16-option choice set (i.e., as empirical estimates of
εθ(16)). That is, for the data on the simple choice
architecture from Figure 2, we have 1 − εl(16) " 0.619;
1 − εm(16) " 0.737; 1 − εh(16) " 0.875. Next, we seek to
estimate error rates for a four-item choice set. Note that
error rates for a four-item choice set cannot be de-
termined in the same way as for the 16-item choice set,

because in the tournament architecture each subjectmade
five discrete responses (one for each of the initial four-
option choice sets and one “final four” round). Perfor-
mance in the three of the four choice sets not containing
the optimal option is irrelevant to the selection of the
optimal alternative. Subjects of type θ thus have error
probability εθ(4) in thefirst round of the tournament, and
if they select the optimal option in the round in which it
initially appears, they face a second choice among the
final four options, again with error rate εθ(4) (assuming
a constant error rate for a given cognitive type and given
choice set size for simplicity). The overall probability of
choosing optimally in the tournament architecture for
a subject of type θ is then [1 − εθ(4)]2.
Taking the empirically observed percentages of

optimal assignments in the tournament architecture
as providing empirical estimates of the quantity
[1 − εθ(4)]2, we have [1− εl(4)]2 " 0.548; [1 − εm(4)]2 "
0.842; [1− εh(4)]2 " 0.900. Solving for εθ(4), we can
identify the unique error rates for each type that fits the
observed data exactly.8 Note that this simple model
would not fit the observed data exactly if εθ(4)>εθ(16)
or if it is not the case that εl>εm>εh for either the
four-option or 16-option choice set. That is, conditions
(1) and (2) are necessary for this simple error rate
model to fit the observed data exactly. The implied error
rates are displayed in Table 4, from which it is clear that
conditions (1) and (2) both hold.
Using this simple error rate model to interpret the

optimal architectures for agents who differ in cognitive
reflection, we see that low-CRT subjects perform best
on the simple choice architecture because it provides
the smallest number of opportunities for error (it re-
quires just one discrete choice response). The effect
of choice overload, which may be quantified by the
difference εl(16) − εl(4) " 0.121 (a 12-percentage-point
increase in error probability for low-CRT subjects when
moving from the four-option to the 16-option choice
set) is weaker than the decline in performance due to
making multiple choices that are prone to error. This
latter effect can be quantified by the difference 1 −
εl(4) − [1 − εl(4)]2 " 0.192 (a 19-percentage-point reduc-
tion in success probability due to the two-stage
tournament procedure). Because implied error rates
in a four-option choice set are considerably lower for
moderate- and high-CRT subjects, choice overload has
a comparatively greater effect, making the tournament
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architecture superior to the simple choice architecture
for these subjects.

6. Identifying Optimal
Choice Architectures

We briefly consider how one might identify the op-
timal architecture in our experiment, given the het-
erogeneity in performance by CRT scores. Viewing the
three different CRT groups as representing different
populations, we consider three welfare criteria to de-
termine whether they provide a consensus on which
architecture should be used by a social planner or policy
maker who wants to benefit society.

The strongest welfare criterion is Pareto efficiency,
which would advocate an architecture that makes at
least some CRT groups better off without making
any group worse off. As we can see from Table 2 and
Figures 2 and 3, none of the architectures is Pareto
efficient. The tournament architecture maximizes the
welfare (in terms of both optimality, average rank
assigned, and smallest amount of money left on the
table) for the medium- and high-CRT groups but does
so at the expense of the low-CRT group, whose chances
of choosing the best option are reduced by approxi-
mately seven percentage points and whose average
rank of assigned option worsens by nearly a full rank,
relative to the simple choice architecture.

The maximin criterion proposed by political phi-
losopher John Rawls (1971) advocates maximizing the
welfare of the population in society that is least well-
off. In our experiment, this criterion would recommend
the architecture in which subjects make one direct
choice from the large choice set because it improves the
welfare of the low-CRT group who have the lowest
welfare in terms of probability of optimality, average
rank of assigned option, and money left on the table,
relative to the other CRT groups.

The utilitarian criterion of Harsanyi (1955) would
recommend choosing the architecture that maximizes the
average social welfare. In many cases it is difficult to

clearly inferwhichpolicy is optimal in this regard because
it requires knowledge of the utilities of all members in
society, which are difficult to observe. However, in
our experiment, because we can rank all options by
stochastic dominance, Harsanyi’s criterion makes the
unambiguous recommendation for the tournament-
style architecture because it optimizes both the av-
erage probability of choosing the optimal option and
the average rank assigned, when taking into account
all participants in the experiment.
The Kaldor-Hicks criterion (Hicks 1939, Kaldor 1939)

views an outcome to be efficient if the group that
benefits could in principle compensate the group that
is made worse off to produce a Pareto improvement,
even if such compensation does not actually occur.
If welfare was evaluated according to money left on
the table, then the tournament architecture is Kaldor-
Hicks efficient because the medium-CRT group and
the high-CRT group could each compensate the low-
CRT group such that everyone is better off under the
tournament architecture. For instance, the medium-
CRT group could pay one percentage point in the
probability of winning to the low-CRT group, in which
case money left on the table would be 0.057 for the low-
CRT group, 0.036 for the medium-CRT group, and 0.013
for the high-CRT group. In contrast, the low-CRTgroup
cannot compensate the others to make the simple
choice architecture Kaldor-Hicks efficient.
Finally, note that if one is able to engage in “archi-

tecture differentiation” by providing different archi-
tectures to the different CRT groups, the low-CRT
group would be assigned the simple choice archi-
tecture, and the medium- and high-CRT groups
would both be assigned the tournament architec-
ture. This assignment holds regardless of whether
we seek an architecture that maximizes the proba-
bility of choosing the optimal option, or maximizes
efficiency, or minimizes the amount of money left
on the table. Under this assignment of architectures,
the average rank of the option assigned across all
members of society (or at least across all subjects in our
experiment) would improve by 15%, from 2.05 to 1.75.

7. Study with Choice, Rating, and
Pricing Tournaments

In our primary study described in the preceding sec-
tions, a “tournament”-style architecture was conducted

Table 4. Error Rates Inferred from Data

Type εθ(4) εθ(16)

θ " l 0.260 0.381
θ " m 0.082 0.263
θ " h 0.051 0.125
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only for the choice response mode. This was done for
two reasons. First, the main objective of that study was
to focus on ways different response modes are most
often presented in practice. The choice tournament was
included owing to its previous success in laboratory
experiments as a means to measure the success of other
architectures should they have outperformed choice all
at once. Second, we worried about fatigue or boredom
impacting subjects if they were asked to do too many
tasks. However, given the success of the tournament
presentation mode with the choice response mode, it is
worth directly investigating the performance of other
response modes in a tournament structure. In this
section we report the results of an additional study
we ran for this purpose. In particular, we conducted
tournaments for choice, rating, and pricing response
modes.

7.1. Experimental Design for Choice, Rating, and
Pricing Tournaments

Using a within-subjects design, we conducted a study
with three choice architectures—a choice tournament,
identical to the one used in the primary study described
above, as well as a “happiness rating” tournament
and a “pricing” tournament architecture. In all three
tournament architectures, subjects were presented with
four options (out of 16) on each screen, and they were
asked to either choose one of the options or rate each
option on a happiness scale or assign a price to each
option. The option selected or assigned the highest
rating or the highest price for each four-option set was
sent to a “final four” round, in which subjects were asked
to choose or rate or price each option in the final four
round. Ties (which could occur in rating and pricing
tournaments but not in the choice tournament) were
broken randomly.

The 16 options in this study were the same as those
used in the primary experiment, but only the first
three PDFs (from Table 1) were used in this study.
The payment protocol was the same as in the primary
experiment, with subjects receiving either $0 or $20,
depending on how much they earned in the one task
that was randomly selected for payment. After all
three tasks were completed, subjects completed a sur-
vey, received payment in private, and were dismissed
from the study. Sixty new subjects were recruited for
this study.

7.2. Results for Choice, Rating, and
Pricing Tournaments

Summary statistics for the study of choice, rating, and
pricing tournaments are given in Table 5. In addition to
the different CRT distribution relative to our primary
study, this follow-up study had slightly younger subjects
(average age of 19.2 years in the primary study and 18.6
years in this tournament study) and fewer male subjects
(there were 61 males of 120 subjects in the primary study
and 19 males of 60 subjects in this tournament study).
We make two observations: first, for the tourna-

ments, choice performs better than rating, which per-
forms better than pricing. This is the same ranking we
observed across all three response modes in the all-at-
once tasks from the primary study, and it is also the
ranking we observed between rating and pricing in
the one-at-a-time tasks from the primary study. Thus,
although the differences are not always large, we con-
sistently observe that the choice response mode performs
better than ratings, which performs better than prices. As
noted in Section 4.2, this might be due to choice response
modes being simpler in that there are fewer possible
responses that the decision maker can provide, whereas
rating and pricing response modes have a larger “mes-
sage space.” Second, we find that high-CRT subjects do
much better than low-CRT subjects in the choice and
rating tournaments but not in the pricing tournament,
althoughwith only 16 high-CRT subjects in this study it is
difficult to draw strong conclusions. Although these
trends replicate our qualitative findings from the primary
study, we also observe that performancewas lower in the
choice tournament in this new study, with only 58.3% of
subjects selecting the optimal option. Part of this drop
was due to the larger proportion of low-CRT subjects,
who constituted approximately one-third of the primary
study butmore than half of the subjects in this follow-up
study. In addition, we observe little variation in the amount
of “money left on the table” across tournament archi-
tectures. The higher amount of money left on the table for
the choice tournament, relative to our primary study, may
also partly reflect the differences in the demographics of
our subjects between studies, as noted above.

8. Incentivized Pricing Study
The numerical values of the price responses discussed
in the previous sections of this paper were not incen-
tivized. That is, although the subject had to bear the
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consequences of the option selected on the basis of the
subject’s stated prices, the subject did not actually have
to pay the stated price. That is, those prices gave an
ordinal but not a cardinal ranking. It is plausible that
incentivized pricing may lead people to think more
earnestly about how much a given option is worth and
thus lead to optimal decision making. In this section we
describe an additional study that was conducted to
examine this issue directly.

8.1. Experimental Design for Incentivized
Pricing Study

This study used a within-subject design that involved
two presentation modes: one-at-a-time and all-at-once.
In both cases, the subject is required to enter 16 prices
that each represent the maximum amount the subject
is willing to pay for one of the respective 16 options.
The two tasks were presented in random order, and the
two PDFs that were observed were drawn randomly
without replacement from the six PDFs described in
Table 1 for the primary study. The option labels and card
numbers were randomized for each subject as in the
other studies discussed above. After both tasks were
completed, one task was randomly selected to deter-
mine the subject’s actual payoff. The subject then
completed the survey, received payment in private,
and was dismissed from the study. Sixty new subjects
were recruited for this study.

After a subject enters a price for each of the 16 options
in the task, a random price was drawn independently
for each option. The computer automatically determined

which option yielded the greatest revealed surplus to
the subject, and this is the option that was selected for
the subject. The subject was required to pay the random
price associated with the selected option, shuffled the
deck of cards, and then drew a card from the deck to
determine whether the subject earned the additional
payment. Formally, let WTPi and Pi denote a subject’s
stated willingness to pay and the random price for
Option i. Option i∗ was selected for the subject, where
i∗ ≡ argmaxi(WTPi − Pi). This procedure is such that it
is incentive compatible for subjects to truthfully reveal
their willingness to pay for each option, but it also
means that subjects are unlikely to end up actually
purchasing the option that they indicated is their
most preferred (i.e., the one they priced the highest).
Because a subject had to be able to actually pay for

the selected option, for each task a subject was given
an endowment. To keep the total stakes comparable
to those in the other tasks presented in this paper,
the additional payment from an option was reduced
to $10. Thus, the prices were randomly drawn from
the uniform distribution from $0.00 to $10.00. For this
reason the endowment was set to $10. Hence, the
earnings of a subject in a given tasks were $10 − Pi∗ if
the subject failed to select a card contained in the se-
lected option and $10 − Pi∗ + $10 if the subject se-
lected a card that was contained in the selected option.

8.2. Results for Incentivized Pricing Study
Because of the smaller sample sizes for each CRT
group relative to our baseline study (with no CRT

Table 5. Results from Choice, Rating, and Pricing Tournaments

CRT group No. of subjects Select optimal Rate optimal Price optimal

Average rank of assigned option
Low 32 3.344 4.625 3.969
Medium 12 3.333 3.333 3.583
High 16 2.563 2.813 4.500
Overall 60 3.133 3.883 4.033

Percentage of optimal assignments
Low 32 0.469 0.375 0.375
Medium 12 0.583 0.583 0.500
High 16 0.813 0.750 0.375
Overall 60 0.583 0.517 0.400

Money left on the table
Low 32 0.094 0.138 0.112
Medium 12 0.085 0.085 0.098
High 16 0.061 0.072 0.129
Overall 60 0.083 0.110 0.114
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group having more than 30 subjects), we refrain from
attempting to identify statistically significant dif-
ferences for each group in this section. Across all
subjects, we find that the differences in average rank
and in the percentage of optimal choices induced by
the incentivized pricing task are not significantly dif-
ferent for the separate and joint presentation modes.9

Relative to the primary experiment, we do find that
the elicited prices in the incentivized pricing study
were more highly correlated with the expected values
of the lotteries. Table 6 displays the median corre-
lation coefficient between the pricing tasks and the
expected values of the lotteries, as well as between
the two pricing tasks for each CRT group and across
all subjects. These data are provided for both the
primary study and the incentivized pricing study.
For the primary study, the median correlation co-
efficient for each CRT group is higher in the pricing
one-at-a-time task than in pricing the options all at
once, indicating that subjects were more likely to price
lotteries in a ranking consistent with their expected
values when evaluated in isolation. In addition, the
correlation within subjects between pricing tasks is
higher for the high-CRT group (0.556) than for the
medium-CRT group (0.480) and the low-CRT group
(0.262) in the primary study, suggesting that subjects
with higher CRT scores were more consistent in their
pricing strategies across the one-at-a-time and all-at-
once tasks.

For the incentivized pricing study, in the pricing
“one-at-a-time” task, the median correlation coefficient
for correlating the expected values of the lotteries to
subjects’ elicited prices increases from 0.664 for the

low-CRT group to 0.914 for the high-CRT group. For
the pricing “all-at-once” task, the median correlation
coefficient increases from 0.568 for the low-CRT group
to 0.860 for the high-CRT group. These results are
shown in Table 6 along with the median correlation
coefficient for elicited prices between tasks. Table 6
also reveals that the low-CRT group was largely un-
affected by incentives with similar correlations in the
primary study and the incentivized pricing study de-
scribed in this section. The incentivized pricing study
did, however, produce more consistent rankings for
the low-CRT group, with correlations within subjects
and between tasks increasing from 0.262 in the pri-
mary study to 0.473 in the incentivized pricing study.
Incentives also increased the correlation between elicited
prices and expected values for both the medium- and
high-CRT groups. From Table 6 we also see that for
the incentivized pricing study, the median correlation
coefficient for correlating the joint and separate
pricing tasks is higher for the high-CRT group than for
the other groups, which was also observed in the
primary study.
In addition to the different CRT distribution relative

to our primary study, this follow-up study had slightly
younger subjects (average age of 19.2 years in the pri-
mary study and 18.4 years in this pricing study) and
fewer male subjects (there were 61 males of 120 subjects
in the primary study and 25 males of 60 subjects in this
pricing study).
Metrics of performance on the incentivized pricing

task are shown in Table 7. The option that is actually
selected in this study depends on 16 random prices
and is not actually informative with regard to the

Table 6. Median Correlations Between Pricing Tasks and Expected Values

CRT group
No. of
subjects

EV vs. pricing
one at a time

EV vs. pricing
all at once

Pricing one at a time vs.
pricing all at once

Median correlations between pricing tasks and expected values in primary study
Low 38 0.625 0.515 0.262
Medium 35 0.640 0.622 0.480
High 40 0.630 0.517 0.556
Overall 113 0.627 0.563 0.401

Median correlations between pricing tasks and expected values in incentivized study
Low 30 0.664 0.568 0.473
Medium 22 0.771 0.740 0.441
High 5 0.914 0.860 0.872
Overall10 57 0.750 0.642 0.506

Note. EV, expected value.
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quality of decision making. What one really cares
about is the option with the highest stated willing-
ness to pay. For ease of exposition and to facilitate
comparison with the primary study, we refer to the
option with the highest stated price as the assigned
option.11

Between subjects, we find that incentives do not
affect the percentage of optimal assignments for the
low-CRT group (0.391 from the primary study versus
0.392 with all options incentivized) for pricing one
at a time and (0.530 from the primary study versus
0.507 with all options incentivized) for pricing all at
once. The average rank for pricing one at a time for the
low-CRT group also is very similar to that from the
primary experiment (4.658 with optimal option in-
centivized versus 4.675 with all options incentivized).

Incentives seem to improve the average rank for the
low-CRT group when considering all options at once
(3.976 with optimal option incentivized versus 2.926
with all options incentivized).

For the medium CRT groups, the percentage of
optimal assignments in the all-at-once pricing task
was higher in the primary study (0.665) than in the
incentivized study (0.411), and the average rank was
also better in the primary study (3.278) than in the
incentivized study (3.582). However, the percentage of
optimal assignments in the one-at-a-time pricing task
was higher in the incentivized study (0.633) than in the
primary study (0.587). The average rank for the one-at-
a-time task was also better in the incentivized study
(2.659) than in the primary study (3.177).

Incentives seem more effective for the high-CRT
group, although it is difficult to draw conclusions with
so few subjects. The data at least suggest that incentives
can improve the performance of high-CRT subjects on
the one-at-a-time task (60.1% optimal assignments

with optimal option incentivized versus 70% with all
options incentivized). Similarly, the average rank of
assigned options is much better for the one-at-a-time
pricing task with all options incentivized than it is
with only the optimal option incentivized (average
ranks of 1.30 versus 3.52, respectively). Indeed, the
average rank of 1.30, if it holds for a larger group of
high-CRT subjects, could make the incentivized pricing
one-at-a-time task competitive with the choice tourna-
ment. In contrast, the percentage of optimal assignments
is lower for the high-CRT group in the all-at-once task
than for the low-CRT group, but that is also likely due to
small sample size.

9. Discussion
In Section 2, we laid out five questions that our study
was intended to answer. With regard to question (1),
our results showpeople perform better when presented
with all options simultaneously rather than in isolation.
With regard to (2), we find some evidence that more
numerical or calculation-based response modes (such
as a monetary valuation task) do not improve decision
making relative to more qualitative or feeling-based
response modes (such as a happiness rating task).
With regard to (3), we find that, in general, more
constrained response modes (those with fewer possible
responses per option) perform better than less con-
strained response modes. With regard to (4), we find
that heterogeneity in cognitive reflection is remarkably
effective in sorting out heterogeneity in performance
across architectures. When using percentage of opti-
mal choices and money left on the table as metrics,
those with higher levels of cognitive reflection con-
sistently perform better than those with lower levels of
cognitive reflection across all six architectures in our
experiment. Additionally, participants who differ in

Table 7. Average Rank and Percentage of Optimal Assignments for Incentivized Pricing
Tasks

CRT group No. of subjects

Average rank of
assigned options

Percentage of
optimal assignments

One at a time All at once One at a time All at once

Low 30 4.675 2.926 0.392 0.507
Medium 23 2.659 3.582 0.633 0.411
High 5 1.300 2.250 0.700 0.250
Overall 58 3.585 3.127 0.514 0.447
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cognitive reflection do not perform best on the same
architectures. We find that the simple choice archi-
tecture (in which all options are presented simulta-
neously) induces the best overall decisions for subjects
with low cognitive reflection and that the sequential
tournament performed best for subjects with mod-
erate to high cognitive reflection. The rankings ob-
served for the above results are generally consistent
across our three performance metrics (proportion of
optimal responses, averagewelfare ranking, andmoney
left on the table). With regard to (5), we find that no
architecture is Pareto efficient and that the optimal
architecture depends on one’s preferred welfare cri-
terion. In particular, Rawls’ maximin criterion recom-
mends implementing the simple choice architecture,
whereas Harsanyi’s utilitarian criterion recommends
implementing the sequential tournament architecture.

More broadly, there has been relatively little re-
search assessing the optimality of different features of
a choice architecture. The possible components of a
choice architecture that are behaviorally relevant are
well known and include, for instance, the frame of
a decision and the presence of a default option, in
addition to the response mode and presentation mode.
Thus far the literature on framing and default options
has largely focused on inconsistencies or preference
reversals (Thaler 1980, Tversky and Kahneman 1981)
rather than on which frames or default options might
induce better decisions. There have been a few ex-
ceptions: see Read et al. (2005) on temporal frames that
induce more patient behavior; Thaler and Benartzi
(2004) on improving savings decisions by systemati-
cally modifying the default option; and Johnson and
Goldstein (2003) on how default options can save lives
through increased organ donations.

As noted earlier, previous research has studied
preference reversals across response modes (e.g.,
Lichtenstein and Slovic 1971, Grether and Plott 1979,
Tversky et al. 1990, Slovic et al. 2007) and preference
reversals across presentation modes (e.g., Hsee 1996,
Hsee et al. 1999, Hsee and Zhang 2010). However,
little research has focused on the optimality of response
modes or presentation modes.12 Our design enables us
to test both of these features of a choice architecture in
individual decisions, within subjects, providing evi-
dence that choice outperforms happiness ratings,
which outperforms pricing, holding the presentation

mode fixed, and that joint presentation yields better
performance than separate presentation, holding the
response mode fixed.
Surprisingly, we also found that for subjects with low

cognitive reflection, choosing among more options at
a time produced higher decision quality than choosing
directly from a smaller choice set. This observation
illustrates a fundamental tradeoff between presentation
complexity and response complexity: for a fixed set
of alternatives, a choice architecture designed with
smaller presentation sets must also be designed to
elicit multiple responses. If error rates are sufficiently
high, as they seem to be for the low cognitive reflection
subjects in our experiment, then smaller presentation
sets can reduce decision quality because they present
multiple opportunities for error.
Fernandes et al. (2014) observe, “Public policy tools

drawn from economics point to three broad classes of
interventions to help consumers make better decisions:
offering more choices; providing better information
to consumers about options they might consider;
and providing incentives for consumers or sellers to
change their behavior.” Our results suggest that a
fourth class of interventions—those that manipulate
the structure of the decision task (e.g., the presentation
mode or response mode) or the flexibility of the decision
task (e.g., the range of possible responses permitted
by the architecture) can also be effective in improving
decisions. In addition, our findings suggest that
performance is best on choice tasks, perhaps because
they are simple, familiar, and intuitive. It is also important
to know the population for whom the architecture
is being designed, because our results pertaining to
heterogeneity in cognitive reflection suggest that there
is not one architecture that consistently optimizes
performance for everyone. Knowing the population
the choice architect is trying to helpmay lead to improved
tradeoffs amongdesign featureswhen engineering choice
architectures to optimize decision quality.

Endnotes
1We refer to subjects with high, medium, and low scores in the
Cognitive Reflection Test as high-CRT, medium-CRT, and low-CRT
respectively. The CRT does not necessarily imply intelligence but
rather reflects the approach a person naturally uses for problem
solving (intuitive versus reflective).
2 Sad emoticons were not used because each option involved a chance
of winning $20 and there was no possibility of losing money. Using
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the neutral emoticon instead of a sad emoticon also may encourage
more use of the full seven-point scale.
3Although the “welfare ranking” differs from the typical metric of
efficiency in economics, the two are perfectly correlated in this study.
This is a consequence of our design, which holds the probability of
every option constant while allowing for the probability of each state
to be different. Thus, calculating any of the typical measures of ef-
ficiency (such as the ratio of the probability of the chosen option and
highest option probability) would differ from our results by only
a constant scalar.
4 For the average rank metric, for the low-CRT group, the p-value for
rating jointly versus rating separately is 0.881, and the p-value for
pricing jointly versus pricing separately is 0.453. For the medium-CRT
group, the p-value for rating jointly versus rating separately is 0.734,
and the p-value of pricing jointly versus pricing separately is 0.8415.
5 For the percentage of optimal choices, for the low-CRT group, the
p-value for rating jointly versus rating separately is 0.576, and the
p-value for pricing jointly versus pricing separately is 0.153. For
the medium-CRT group, the p-value for rating jointly versus rating
separately is 0.204, and the p-value for pricing jointly versus pricing
separately is 0.358.
6We varied the complexity of response and presentation modes and
kept the complexity of the options fixed. Huck andWeizsäcker (1999)
analyze deviations from expected value maximization by varying the
complexity of lotteries.
7 In contrast, the tournament architecture performs significantly
better than the simple choice architecture for the medium-CRT group
in terms of efficiency (p < 0.05, two-tailed Wilcoxon signed rank test)
but not in terms of the percentage of optimal choices. At the ag-
gregate level, the performance of the tournament architecture is not
significantly different from the performance of the simple choice
architecture.
8Alternatively, we could observe the error rates for four-option
choice sets containing the optimal option directly. Doing so yields
(εl(4), εm(4), εh(4)) " (0.260, 0.069, 0.051), which are close to the
values in Table 3. That these error rates are not identical to those in
Table 3 suggests that error rates between rounds may not be
independent.
9The differences in average rank between the separate and joint
presentation modes with incentivized pricing is 0.458 (p = 0.834,
two-tailed Wilcoxon signed rank test). The differences in the per-
centage of optimal choices for the separate and joint presentation
modes with incentivized pricing is 0.067 (p = 0.407, two-tailed
Wilcoxon signed rank test).
10 Seven subjects in the primary study and one subject in the
incentivized pricing study had correlation coefficients that were
undefined (they assigned the same price to all options) and so are
not included in the statistics in Table 6. Two subjects in one
session did not enter their ID number into the survey, and so we
could not link their CRT scores to their pricing data. The soft-
ware for conducting this study differed from the software for the
other two, which automated the link between the task and the
survey.
11 In expectation, the option with the highest stated price is the most
likely to be assigned because prices are drawn from the same dis-
tribution for each option.
12But see Hsee (1998) and List (2002) on between-subject valuations
for a dominant and a dominated option, and see Bohnet et al. (2015)

on using joint presentation mode to improve profit maximizing
performance evaluation procedures by corporations.
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Besedeš T, Deck C, Sarangi S, Shor M (2012a) Age effects and
heuristics in decision making. Rev. Econom. Statist. 94(2):
580–595.
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